253 research outputs found

### Three-coloring graphs with no induced seven-vertex path II : using a triangle

In this paper, we give a polynomial time algorithm which determines if a given graph containing a triangle and no induced seven-vertex path is 3-colorable, and gives an explicit coloring if one exists. In previous work, we gave a polynomial time algorithm for three-coloring triangle-free graphs with no induced seven-vertex path. Combined, our work shows that three-coloring a graph with no induced seven-vertex path can be done in polynomial time.Comment: 26 page

### Disjoint paths in tournaments

Given $k$ pairs of vertices $(s_i,t_i)$, $1\le i\le k$, of a digraph $G$, how can we test whether there exist $k$ vertex-disjoint directed paths from $s_i$ to $t_i$ for $1\le i\le k$? This is NP-complete in general digraphs, even for $k = 2$, but for $k=2$ there is a polynomial-time algorithm when $G$ is a tournament (or more generally, a semicomplete digraph), due to Bang-Jensen and Thomassen. Here we prove that for all fixed $k$ there is a polynomial-time algorithm to solve the problem when $G$ is semicomplete

### Induced subgraphs of graphs with large chromatic number. XI. Orientations

Fix an oriented graph H, and let G be a graph with bounded clique number and very large chromatic number. If we somehow orient its edges, must there be an induced subdigraph isomorphic to H? Kierstead and Rodl raised this question for two specific kinds of digraph H: the three-edge path, with the first and last edges both directed towards the interior; and stars (with many edges directed out and many directed in). Aboulker et al subsequently conjectured that the answer is affirmative in both cases. We give affirmative answers to both questions

### Detecting a long odd hole

For each integer $t\ge 5$, we give a polynomial-time algorithm to test whether a graph contains an induced cycle with length at least $t$ and odd
• â€¦