2 research outputs found

    Effects of Engineered Nanoparticles on the Enantioselective Transformation of Metalaxyl Agent and Commercial Metalaxyl in Agricultural Soils

    No full text
    The adsorption coefficient of racemic metalaxyl onto an agriculture soil was small and nonenantioselective. Biotransformation was the predominant pathway for the elimination of <i>R</i>-metalaxyl, while abiotic and biotransformation made a comparable contribution to the degradation of <i>S</i>-metalaxyl. Metalaxyl acid was the main transformation intermediate. The enantiomer fraction of metalaxyl decreased with an increase in its initial spike concentration or the presence of the co-constituents in metalaxyl commercial products. Under simulated solar irradiation, the presence of TiO<sub>2</sub> promoted the overall transformation kinetics through enhanced biotransformation and extra photoinduced chemical reactions. The promotion was enantioselective and thereafter changed the enantiomer fraction. The results obtained in this study showed that some achiral parameters, although they have no direct impact on enantioselective reactions with enantiomers, can significantly affect the enantioselective transformation of racemic metalaxyl. Thus, our results indicate that the contribution of chemical interactions on the enantioselective transformation of chiral pesticides may be underestimated

    Modeling Free Nitrous Acid Inhibition on the Removal of Nitrogen and Atenolol during Sidestream Partial Nitritation Processes

    No full text
    Sidestream serves as an important reservoir collecting pharmaceuticals from sludge. However, the knowledge on sidestream pharmaceutical removal is still insufficient. In this work, atenolol biodegradation during sidestream partial nitritation (PN) processes characterized by high free nitrous acid (FNA) accumulation was modeled. To describe the FNA inhibition on ammonia oxidation and atenolol removal, Vadivelu-type and Hellinga-type inhibition kinetics were introduced into the model framework. Four inhibitory parameters along with four biodegradation kinetic parameters were calibrated and validated separately with eight sets of batch experimental data and 60 days’ PN reactor operational data. The developed model could accurately reproduce the dynamics of nitrogen and atenolol. The model prediction further revealed that atenolol biodegradation efficiencies by ammonia-oxidizing bacteria (AOB)-induced cometabolism, AOB-induced metabolism, and heterotrophic bacteria-induced biodegradation were 0, ∼ 60, and ∼35% in the absence of ammonium and FNA; ∼ 14, ∼ 29, and ∼28% at 0.03 mg-N L–1 FNA; and 7, 15, and 5% at 0.19 mg-N L–1 FNA. Model simulation showed that the nitritation efficiency of ∼99% and atenolol removal efficiency of 57.5% in the PN process could be achieved simultaneously by controlling pH at 8.5, while 89.2% total nitrogen and 57.1% atenolol were removed to the maximum at pH of 7.0 in PN coupling with the anammox process. The pH-based operational strategy to regulate FNA levels was mathematically demonstrated to be effective for achieving the simultaneous removal of nitrogen and atenolol in PN-based sidestream processes
    corecore