22 research outputs found
Securing Federated Sensitive Topic Classification against Poisoning Attacks
We present a Federated Learning (FL) based solution for building a
distributed classifier capable of detecting URLs containing GDPR-sensitive
content related to categories such as health, sexual preference, political
beliefs, etc. Although such a classifier addresses the limitations of previous
offline/centralised classifiers,it is still vulnerable to poisoning attacks
from malicious users that may attempt to reduce the accuracy for benign users
by disseminating faulty model updates. To guard against this, we develop a
robust aggregation scheme based on subjective logic and residual-based attack
detection. Employing a combination of theoretical analysis, trace-driven
simulation, as well as experimental validation with a prototype and real users,
we show that our classifier can detect sensitive content with high accuracy,
learn new labels fast, and remain robust in view of poisoning attacks from
malicious users, as well as imperfect input from non-malicious ones
Anapole mediated giant photothermal nonlinearity in nanostructured silicon
Featured with a plethora of electric and magnetic Mie resonances, high index
dielectric nanostructures offer a versatile platform to concentrate
light-matter interactions at the nanoscale. By integrating unique features of
far-field scattering control and near-field concentration from radiationless
anapole states, here, we demonstrate a giant photothermal nonlinearity in
single subwavelength-sized silicon nanodisks. The nanoscale energy
concentration and consequent near-field enhancements mediated by the anapole
mode yield a reversible nonlinear scattering with a large modulation depth and
a broad dynamic range, unveiling a record-high nonlinear index change up to 0.5
at mild incident light intensities on the order of MW/cm2. The observed
photothermal nonlinearity showcases three orders of magnitude enhancement
compared with that of unstructured bulk silicon, as well as nearly one order of
magnitude higher than that through the radiative electric dipolar mode. Such
nonlinear scattering can empower distinctive point spread functions in confocal
reflectance imaging, offering the potential for far-field localization of
nanostructured Si with an accuracy approaching 40 nm. Our findings shed new
light on active silicon photonics based on optical anapoles
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Synergy Degree Evaluation of Stakeholder Engagement in Integrated Municipal Solid Waste Management: A Case Study in Harbin, China
Municipal solid waste (MSW) has caused the increasing concern for environmental issues in recent years, and the wide engagement from all stakeholders of society has been involved in promoting integrated MSW management. Therefore, this study aims to identify the problems of dis-synergy among multi-stakeholders engaged in the integrated MSW management evolution, then contribute strategies to coordinated development of integrated MSW management system by bettering the engagement and interaction of different stakeholders combined with the region characteristics. From the perspective of the stakeholder theory and synergy theory, we constructed an integrated MSW management system with four stakeholder subsystems: governments, enterprises, residents, and NGO subsystems. We used integrated MSW management in Harbin as a case study and used the synergy degree model to estimate the system synergy degree from 2010 to 2019. Then, the synergetic development trend of integrated MSW management was studied, providing a feasible approach to boost the coordinated development of integrated MSW management in Harbin. The results were in concordance with the factual situation and pointed to integrated MSW management in Harbin and, although there is movement towards a more harmonious and orderly state over time, the government subsystem needs to be further reinforced
Consumer Behavior Based on the SOR Model: How do Short Video Advertisements Affect Furniture Consumers’ Purchase Intentions?
Short video advertisements are a novel and influential medium for promoting furniture products, but their effects on consumers’ purchase intentions remain underexplored. This study applies the extended stimulus-organism-response (SOR) framework, a psychological theory that elucidates how stimuli (short video ads), organisms (consumers), and responses (purchase intentions) are interrelated. This study quantitatively examines these relationships using structural equation modeling (SEM). The results reveal that the Flow experience and Telepresence experience significantly affect purchase intentions, indicating that consumers who experience high levels of engagement and immersion while viewing short furniture-related video ads are more likely to exhibit buying behavior. This study also identifies three critical antecedents of the Telepresence experience: social influence, perceived entertainment value, and perceived interactivity. These factors may enhance the effectiveness of short-form video advertising by increasing consumer interaction and engagement. Moreover, convenience conditions, perceived entertainment value, and media richness significantly influence consumers’ flow experience. This suggests that these factors should be considered when designing short video advertisements to optimize consumers’ flow experience and thus increase purchase intentions. This study provides empirical evidence for the SOR framework, investigates the impact of short video advertisements on furniture consumers’ purchase intention, and offers practical implications and recommendations for marketing practitioners
Exploring the mechanism of luteolin by regulating microglia polarization based on network pharmacology and in vitro experiments
Abstract Neuroinflammation manifests following injury to the central nervous system (CNS) and M1/M2 polarization of microglia is closely associated with the development of this neuroinflammation. In this study, multiple databases were used to collect targets regarding luteolin and microglia polarization. After obtaining a common target, a protein–protein interaction (PPI) network was created and further analysis was performed to obtain the core network. Molecular docking of the core network with luteolin after gene enrichment analysis. In vitro experiments were used to examine the polarization of microglia and the expression of related target proteins. A total of 77 common targets were obtained, and the core network obtained by further analysis contained 38 proteins. GO and KEGG analyses revealed that luteolin affects microglia polarization in regulation of inflammatory response as well as the interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways. Through in vitro experiments, we confirmed that the use of luteolin reduced the expression of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, p-NFκBIA (p-IκB-α), p-NFκB p65, and MMP9, while upregulating the expression of Arg-1 and IL-10. This study reveals various potential mechanisms by which luteolin induces M2 polarization in microglia to inhibit the neuroinflammatory response
Engineering work functions of cobalt-doped manganese oxide based electrocatalysts for highly efficient oxygen evolution reaction
The crystalline and electronic structures are two important factors for the design of electrocatalysts. In this work, Co-doped MnO electrocatalysts grown on nickel foam (NF) were prepared by a facile hydrothermal reaction, followed by H2 treatment process. The electrocatalytic performance of MnO was significantly improved after doping with Co and the Co0.1Mn0.9O-NF sample achieved excellent oxygen evolution reaction (OER) performance with low overpotential (370 mV at 10 mA cm−2) and reasonable Tafel slope (85.6 mV dec-1). Significantly, the low work function was obtained in the Co0.1Mn0.9O-NF sample (4.37 eV), which could accelerate the charge transfer process of the OER activity. The excellent OER performance of the Co0.1Mn0.9O-NF sample is also attributed to the rich active sites, which improved electrical conductivity and enlarged electrochemical surface areas.</p
Nickel-Doped Manganese Dioxide Electrocatalysts with MXene Surface Decoration for Oxygen Evolution Reaction
Electrochemical water splitting (EWS) has been considered as an ideal strategy to produce renewable hydrogen energy. However, the application of EWS is hindered by its sluggish kinetics of oxygen evolution half-reaction. In this work, we successfully prepared an efficient MXene-Ni0.075Mn0.925O2/CC catalyst for oxygen evolution reaction (OER) enhanced by a novel electrodeposition process. By corroborating from characterization results, the Ni element has been successfully doped into the MnO2crystal. In addition, electron microscopy images visualized that MXene firmly cooperated with the Ni-doped MnO2. With the proper amount of Ni doping in the pristine MnO2, more defects were induced. In addition, the two-dimensional (2D) MXene cooperation collaboratively provided more mass transport channels for OER. Therefore, the prepared MXene-Ni0.075Mn0.925O2/CC catalyst exhibited an outstanding catalytic performance with an overpotential of ?410 mV at a constant current density of 50 mA cm-2, about 105 mV smaller than that of the pristine MnO2/CC catalyst. The proposed electrodeposition method may pave the way for future designing of binder-free electrocatalytic materials for EWS