16 research outputs found

    Single-Walled Carbon Nanotube-Induced Orthogonal Growth of Polyethylene Single Crystals at a Curved Liquid/Liquid Interface

    No full text
    We report herein single-walled carbon nanotube-induced polyethylene crystallization at the curved liquid/liquid interface. A Pickering emulsion system comprised of polyethylene (PE)/single-walled carbon nanotubes (SWCNTs)/1,2-dichlorobenzene (DCB)/water is formed using probe sonication at an elevated temperature. SWCNTs are used as the Pickering agents, and they are bent into nanosized rings by the curved DCB/water interface. Upon cooling, PE crystallizes onto SWCNTs, forming kebab single crystals, and the PE lamellae are orthogonal to the DCB/water interface. The unique structure resembles nanohybrid shish kebab (NHSK) rings

    Janus Polymer Single Crystal Nanosheet via Evaporative Crystallization

    No full text
    We show that liquid/liquid interface can guide polymer chain folding during crystallization. Evaporation-induced crystallization of telechelic dicarboxyl end-functionalized poly­(ε-caprolactone) (COOH-PCL-COOH) at a water/pentyl acetate interface produced millimeter-scale, uniform polymer single crystal (PSC) films. Due to the asymmetric nature at the interface, the PSC nanosheets exhibited a Janus structure: the two surfaces of the crystal showed distinct water contact angle, which are quantitatively confirmed by in situ nanocondensation using environmental scanning electron microscopy (ESEM)

    Crystallization of Poly(l‑lactic acid) on Water Surfaces via Controlled Solvent Evaporation and Langmuir–Blodgett Films

    No full text
    Solvent evaporation is one of the most fundamental processes in soft matter. Structures formed via solvent evaporation are often complex yet tunable via the competition between solute diffusion and solvent evaporation time scales. This work concerns the polymer evaporative crystallization on the water surface (ECWS). The dynamic and two-dimensional (2D) nature of the water surface offers a unique way to control the crystallization pathway of polymeric materials. Using poly(l-lactic acid) (PLLA) as the model polymer, we demonstrate that both one-dimensional (1D) crystalline filaments and two-dimensional (2D) lamellae are formed via ECWS, in stark contrast to the 2D Langmuir–Blodgett monolayer systems as well as polymer solution crystallization. Results show that this filament-lamella biphasic structure is tunable via chemical structures such as molecular weight and processing conditions such as temperature and evaporation rate

    Polymer Single Crystal As Magnetically Recoverable Support for Nanocatalysts

    No full text
    In this Letter, we report, for the first time, using polymer single crystal as magnetically recoverable support for nanoparticle catalysts. This catalyst system is composed of polymer single crystal, platinum nanoparticles, and iron oxide nanoparticles, which act as support, catalysts, and magnetic responsive materials, respectively. Platinum nanoparticles and iron oxide nanoparticles were bonded onto thiol groups and hydroxyl groups on a tailor-designed polymer single-crystal surface. Because of its quasi 2D nature, polymer single crystal possesses high surface area to volume ratio (2.5 × 10<sup>8</sup> m<sup>–1</sup>), which is ∼40 times higher than its nanosphere counterpart of the same volume. This high surface to volume ratio facilitates the high loading of both nanoparticles, which ensures efficient catalytic reaction and reliable nanoparticle recycling. Synergetic interactions between platinum and iron oxide nanoparticles also led to further improvement in catalytic activity

    Directed Self-Assembly of Nanoparticles for Nanomotors

    No full text
    We report, for the first time, the design and fabrication of a nanoparticle-based nanomotor system by directly self-assembling nanoparticles onto functional, nanometer-thin lamellae, such as polymer single crystals. Tens of thousands of judiciously selected nanoparticles (gold, iron oxide, and platinum nanoparticles) with sizes ranging from <5 to a few tens of nanometers have been introduced into a single nanomotor <i>via</i> directed self-assembly. The resulting nanomotor realizes functions such as autonomous movement, remote control, and cargo transportation by utilizing the advantages offered by nanoparticles, such as the small size, surface plasmon resonance, catalytic and magnetic properties. Because of the structural and functional versatility of nanoparticles, the facile fabricating procedure, and the potential for mass production, our strategy shows a key step toward the development of next generation multifunctional nanomotors

    Anisotropic Ion Transport in a Poly(ethylene oxide)–LiClO<sub>4</sub> Solid State Electrolyte Templated by Graphene Oxide

    No full text
    Solid polymer electrolytes (SPEs) have attracted intensive attention due to their potential applications in all-solid-state lithium batteries. Tailoring crystallization is crucial to the design of high performance poly­(ethylene oxide) (PEO)–based SPEs. In this paper, we demonstrate that PEO crystal orientation in a PEO–lithium electrolyte results in anisotropic ionic conductivity along and through the crystalline lamellae. This conductivity anisotropy can be further enhanced by incorporating two-dimensional graphene oxide (GO) nanosheets, which retard PEO crystallization, template the crystal orientation, and guide the ion transport, leading to highly anisotropic and conductive nanocomposite polymer electrolytes

    How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes?

    No full text
    Polymer electrolytes have attracted intensive attention due to their potential applications in all-solid-state lithium batteries. Ion conduction in this system is generally considered to be confined in the amorphous polymer/ion phase, where segmental relaxation of the polymer above glass transition temperature facilitates ion transport. In this article, we show quantitatively that the effect of polymer crystallization on ion transport is twofold: structural (tortuosity) and dynamic (tethered chain confinement). We decouple these two effects by designing and fabricating a model polymer single crystal electrolyte system with controlled crystal structure, size, crystallinity, and orientation. Ion conduction is confined within the chain fold region and guided by the crystalline lamellae. We show that, at low content, due to the tortuosity effect, the in-plane conductivity is 2000 times greater than through-plane one. Contradictory to the general view, the dynamic effect is negligible at moderate ion contents. Our results suggest that semicrystalline polymer is a valid system for practical polymer electrolytes design

    Directed Self-Assembly of Nanoparticles for Nanomotors

    No full text
    We report, for the first time, the design and fabrication of a nanoparticle-based nanomotor system by directly self-assembling nanoparticles onto functional, nanometer-thin lamellae, such as polymer single crystals. Tens of thousands of judiciously selected nanoparticles (gold, iron oxide, and platinum nanoparticles) with sizes ranging from <5 to a few tens of nanometers have been introduced into a single nanomotor <i>via</i> directed self-assembly. The resulting nanomotor realizes functions such as autonomous movement, remote control, and cargo transportation by utilizing the advantages offered by nanoparticles, such as the small size, surface plasmon resonance, catalytic and magnetic properties. Because of the structural and functional versatility of nanoparticles, the facile fabricating procedure, and the potential for mass production, our strategy shows a key step toward the development of next generation multifunctional nanomotors

    Directed Self-Assembly of Nanoparticles for Nanomotors

    No full text
    We report, for the first time, the design and fabrication of a nanoparticle-based nanomotor system by directly self-assembling nanoparticles onto functional, nanometer-thin lamellae, such as polymer single crystals. Tens of thousands of judiciously selected nanoparticles (gold, iron oxide, and platinum nanoparticles) with sizes ranging from <5 to a few tens of nanometers have been introduced into a single nanomotor <i>via</i> directed self-assembly. The resulting nanomotor realizes functions such as autonomous movement, remote control, and cargo transportation by utilizing the advantages offered by nanoparticles, such as the small size, surface plasmon resonance, catalytic and magnetic properties. Because of the structural and functional versatility of nanoparticles, the facile fabricating procedure, and the potential for mass production, our strategy shows a key step toward the development of next generation multifunctional nanomotors

    Mimicking Bone Nanostructure by Combining Block Copolymer Self-Assembly and 1D Crystal Nucleation

    No full text
    The orientation and spatial distribution of nanocrystals in the organic matrix are two distinctive structural characteristics associated with natural bone. Synthetic soft materials have been used to successfully control the orientation of mineral crystals. The spatial distribution of minerals in a synthetic scaffold, however, has yet to be reproduced in a biomimetic manner. Herein, we report using block copolymer-decorated polymer nanofibers to achieve biomineralized fibrils with precise control of both mineral crystal orientation and spatial distribution. Exquisite nanoscale structural control in biomimetic hybrid materials has been demonstrated
    corecore