11 research outputs found
Presentation_1_Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing.pdf
Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.</p
Data_Sheet_1_Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing.xlsx
Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.</p
Data_Sheet_1_A Francisella novicida Mutant, Lacking the Soluble Lytic Transglycosylase Slt, Exhibits Defects in Both Growth and Virulence.PDF
Francisella tularensis is the causative agent of tularemia and has gained recent interest as it poses a significant biothreat risk. F. novicida is commonly used as a laboratory surrogate for tularemia research due to genetic similarity and susceptibility of mice to infection. Currently, there is no FDA-approved tularemia vaccine, and identifying therapeutic targets remains a critical gap in strategies for combating this pathogen. Here, we investigate the soluble lytic transglycosylase or Slt in F. novicida, which belongs to a class of peptidoglycan-modifying enzymes known to be involved in cell division. We assess the role of Slt in biology and virulence of the organism as well as the vaccine potential of the slt mutant. We show that the F. novicida slt mutant has a significant growth defect in acidic pH conditions. Further microscopic analysis revealed significantly altered cell morphology compared to wild-type, including larger cell size, extensive membrane protrusions, and cell clumping and fusion, which was partially restored by growth in neutral pH or genetic complementation. Viability of the mutant was also significantly decreased during growth in acidic medium, but not at neutral pH. Furthermore, the slt mutant exhibited significant attenuation in a murine model of intranasal infection and virulence could be restored by genetic complementation. Moreover, we could protect mice using the slt mutant as a live vaccine strain against challenge with the parent strain; however, we were not able to protect against challenge with the fully virulent F. tularensis Schu S4 strain. These studies demonstrate a critical role for the Slt enzyme in maintaining proper cell division and morphology in acidic conditions, as well as replication and virulence in vivo. Our results suggest that although the current vaccination strategy with F. novicida slt mutant would not protect against Schu S4 challenges, the Slt enzyme could be an ideal target for future therapeutic development.</p
Table_1_Live attenuated vaccines and layered defense strategies to combat infections caused by nonencapsulated Yersinia pestis.xlsx
IntroductionPlague is an ancient disease caused by Yersinia pestis, a widely disseminated Tier 1 pathogen that poses significant public health and biothreat risks. The rapid course and high mortality of pneumonic plague limit the efficacy of antibiotic treatment and mandate the need for an effective, licensed, and readily available vaccine. New candidate vaccines are being developed; however, their efficacy in nonhuman primates, optimal vaccination schedule and immune response, duration of protection, and breadth of coverage against various virulent strains are inadequately understood. In the current work, we explored homologous and heterologous vaccination schemes using the sensitive BALB/c mouse models of bubonic and pneumonic plague challenged with Y. pestis strain C12. This strain, a derivative of the wild-type strain CO92, lacks the anti-phagocytic F1 capsule yet remains highly virulent. Protection against such nonencapsulated strains has been particularly elusive.MethodsWe tested the efficacy of live attenuated vaccine (LAV) derivatives of Y. pestis CO92 or C12 with a deletion of a type 3 secretion-associated gene (ΔyscN) or the pgm pigmentation locus, and they were cured of the pPst (PCP1) plasmid (CO92 pgm− pPst−). The LAVs were evaluated alone or accompanied by a dose of a protein subunit vaccine (rF1V or rV).ResultsThe most protective and immunogenic vaccination scheme, as tested under a variety of conditions in bubonic and pneumonic plague models, was heterologous vaccination with a LAV and the recombinant rF1V or rV protein subunit vaccine. Furthermore, in the heterologous scheme, different LAVs and subunit vaccines could be substituted, affording flexibility in vaccine component selection. We also evaluated a novel intervention strategy consisting of vaccination and post-exposure antibiotic treatment. The layering of vaccination with the LAVs and post-exposure treatment with streptomycin was synergistic, extending the time after the Y. pestis C12 challenge when treatment remained effective and affording a sparing of antibiotics.ConclusionThe current work defined effective and flexible vaccination and treatment interventions that successfully prevented lethal infection with virulent, nonencapsulated Y. pestis.</p
Data_Sheet_2_Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing.xlsx
Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.</p
Data_Sheet_2_A Francisella novicida Mutant, Lacking the Soluble Lytic Transglycosylase Slt, Exhibits Defects in Both Growth and Virulence.PDF
Francisella tularensis is the causative agent of tularemia and has gained recent interest as it poses a significant biothreat risk. F. novicida is commonly used as a laboratory surrogate for tularemia research due to genetic similarity and susceptibility of mice to infection. Currently, there is no FDA-approved tularemia vaccine, and identifying therapeutic targets remains a critical gap in strategies for combating this pathogen. Here, we investigate the soluble lytic transglycosylase or Slt in F. novicida, which belongs to a class of peptidoglycan-modifying enzymes known to be involved in cell division. We assess the role of Slt in biology and virulence of the organism as well as the vaccine potential of the slt mutant. We show that the F. novicida slt mutant has a significant growth defect in acidic pH conditions. Further microscopic analysis revealed significantly altered cell morphology compared to wild-type, including larger cell size, extensive membrane protrusions, and cell clumping and fusion, which was partially restored by growth in neutral pH or genetic complementation. Viability of the mutant was also significantly decreased during growth in acidic medium, but not at neutral pH. Furthermore, the slt mutant exhibited significant attenuation in a murine model of intranasal infection and virulence could be restored by genetic complementation. Moreover, we could protect mice using the slt mutant as a live vaccine strain against challenge with the parent strain; however, we were not able to protect against challenge with the fully virulent F. tularensis Schu S4 strain. These studies demonstrate a critical role for the Slt enzyme in maintaining proper cell division and morphology in acidic conditions, as well as replication and virulence in vivo. Our results suggest that although the current vaccination strategy with F. novicida slt mutant would not protect against Schu S4 challenges, the Slt enzyme could be an ideal target for future therapeutic development.</p
Presentation_2_Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing.PDF
Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.</p
Table_2_Live attenuated vaccines and layered defense strategies to combat infections caused by nonencapsulated Yersinia pestis.xlsx
IntroductionPlague is an ancient disease caused by Yersinia pestis, a widely disseminated Tier 1 pathogen that poses significant public health and biothreat risks. The rapid course and high mortality of pneumonic plague limit the efficacy of antibiotic treatment and mandate the need for an effective, licensed, and readily available vaccine. New candidate vaccines are being developed; however, their efficacy in nonhuman primates, optimal vaccination schedule and immune response, duration of protection, and breadth of coverage against various virulent strains are inadequately understood. In the current work, we explored homologous and heterologous vaccination schemes using the sensitive BALB/c mouse models of bubonic and pneumonic plague challenged with Y. pestis strain C12. This strain, a derivative of the wild-type strain CO92, lacks the anti-phagocytic F1 capsule yet remains highly virulent. Protection against such nonencapsulated strains has been particularly elusive.MethodsWe tested the efficacy of live attenuated vaccine (LAV) derivatives of Y. pestis CO92 or C12 with a deletion of a type 3 secretion-associated gene (ΔyscN) or the pgm pigmentation locus, and they were cured of the pPst (PCP1) plasmid (CO92 pgm− pPst−). The LAVs were evaluated alone or accompanied by a dose of a protein subunit vaccine (rF1V or rV).ResultsThe most protective and immunogenic vaccination scheme, as tested under a variety of conditions in bubonic and pneumonic plague models, was heterologous vaccination with a LAV and the recombinant rF1V or rV protein subunit vaccine. Furthermore, in the heterologous scheme, different LAVs and subunit vaccines could be substituted, affording flexibility in vaccine component selection. We also evaluated a novel intervention strategy consisting of vaccination and post-exposure antibiotic treatment. The layering of vaccination with the LAVs and post-exposure treatment with streptomycin was synergistic, extending the time after the Y. pestis C12 challenge when treatment remained effective and affording a sparing of antibiotics.ConclusionThe current work defined effective and flexible vaccination and treatment interventions that successfully prevented lethal infection with virulent, nonencapsulated Y. pestis.</p
Presentation_1_Live attenuated vaccines and layered defense strategies to combat infections caused by nonencapsulated Yersinia pestis.pptx
IntroductionPlague is an ancient disease caused by Yersinia pestis, a widely disseminated Tier 1 pathogen that poses significant public health and biothreat risks. The rapid course and high mortality of pneumonic plague limit the efficacy of antibiotic treatment and mandate the need for an effective, licensed, and readily available vaccine. New candidate vaccines are being developed; however, their efficacy in nonhuman primates, optimal vaccination schedule and immune response, duration of protection, and breadth of coverage against various virulent strains are inadequately understood. In the current work, we explored homologous and heterologous vaccination schemes using the sensitive BALB/c mouse models of bubonic and pneumonic plague challenged with Y. pestis strain C12. This strain, a derivative of the wild-type strain CO92, lacks the anti-phagocytic F1 capsule yet remains highly virulent. Protection against such nonencapsulated strains has been particularly elusive.MethodsWe tested the efficacy of live attenuated vaccine (LAV) derivatives of Y. pestis CO92 or C12 with a deletion of a type 3 secretion-associated gene (ΔyscN) or the pgm pigmentation locus, and they were cured of the pPst (PCP1) plasmid (CO92 pgm− pPst−). The LAVs were evaluated alone or accompanied by a dose of a protein subunit vaccine (rF1V or rV).ResultsThe most protective and immunogenic vaccination scheme, as tested under a variety of conditions in bubonic and pneumonic plague models, was heterologous vaccination with a LAV and the recombinant rF1V or rV protein subunit vaccine. Furthermore, in the heterologous scheme, different LAVs and subunit vaccines could be substituted, affording flexibility in vaccine component selection. We also evaluated a novel intervention strategy consisting of vaccination and post-exposure antibiotic treatment. The layering of vaccination with the LAVs and post-exposure treatment with streptomycin was synergistic, extending the time after the Y. pestis C12 challenge when treatment remained effective and affording a sparing of antibiotics.ConclusionThe current work defined effective and flexible vaccination and treatment interventions that successfully prevented lethal infection with virulent, nonencapsulated Y. pestis.</p
Presentation_1_Impact of Toll-Like Receptor-Specific Agonists on the Host Immune Response to the Yersinia pestis Plague rF1V Vaccine.pdf
Relatively recent advances in plague vaccinology have produced the recombinant fusion protein F1-V plague vaccine. This vaccine has been shown to readily protect mice from both bubonic and pneumonic plague. The protection afforded by this vaccine is solely based upon the immune response elicited by the F1 or V epitopes expressed on the F1-V fusion protein. Accordingly, questions remain surrounding its efficacy against infection with non-encapsulated (F1-negative) strains. In an attempt to further optimize the F1-V elicited immune response and address efficacy concerns, we examined the inclusion of multiple toll-like receptor agonists into vaccine regimens. We examined the resulting immune responses and also any protection afforded to mice that were exposed to aerosolized Yersinia pestis. Our data demonstrate that it is possible to further augment the F1-V vaccine strategy in order to optimize and augment vaccine efficacy.</p
