8 research outputs found

    3D mid-air audio-haptic navigation for digital signage

    Get PDF
    In this workshop we discuss the application of using mid-air haptics to provide directions for navigation to users in large indoor spaces. We propose a feed-forward approach from objects and locations that enable a physical way of thinking, communication and general accessibility

    Using immersive audio and vibration to enhance remote diagnosis of mechanical failure in uncrewed vessels.

    Get PDF
    There is increasing interest in the maritime industry in the potential use of uncrewed vessels to improve the efficiency and safety of maritime operations. This leads to a number of questions relating to the maintenance and repair of mechanical systems, in particular, critical propulsion systems which if a failure occurs could endanger the vessel. While control data is commonly monitored remotely, engineers on board ship also employ a wide variety of sensory feedback such as sound and vibration to diagnose the condition of systems, and these are often not replicated in remote monitoring. In order to assess the potential for enhancement of remote monitoring and diagnosis, this project simulated an engine room (ER) based on a real vessel in Unreal Engine 4 for the HTC ViveTM VR headset. Audio was recorded from the vessel, with mechanical faults synthesized to create a range of simulated failures. In order to simulate operational requirements, the system was remotely fed data from an external server. The system allowed users to view normal control room data, listen to the overall sound of the space presented spatially over loudspeakers, isolate the sound of particular machinery components, and feel the vibration of machinery through a body worn vibration transducer. Users could scroll through a 10-hour time history of system performance, including audio, vibration and data for snapshots at hourly intervals. Seven experienced marine engineers were asked to assess several scenarios for potential faults in different elements of the ER. They were assessed both quantitatively regarding correct fault identification, and qualitatively in order to assess their perception of usability of the system. Users were able to diagnose simulated mechanical failures with a high degree of accuracy, mainly utilising audio and vibration stimuli, and reported specifically that the immersive audio and vibration improved realism and increased their ability to diagnose system failures from a remote location

    Content-Based Image Retrieval in Radiology: Current Status and Future Directions

    No full text
    Diagnostic radiology requires accurate interpretation of complex signals in medical images. Content-based image retrieval (CBIR) techniques could be valuable to radiologists in assessing medical images by identifying similar images in large archives that could assist with decision support. Many advances have occurred in CBIR, and a variety of systems have appeared in nonmedical domains; however, permeation of these methods into radiology has been limited. Our goal in this review is to survey CBIR methods and systems from the perspective of application to radiology and to identify approaches developed in nonmedical applications that could be translated to radiology. Radiology images pose specific challenges compared with images in the consumer domain; they contain varied, rich, and often subtle features that need to be recognized in assessing image similarity. Radiology images also provide rich opportunities for CBIR: rich metadata about image semantics are provided by radiologists, and this information is not yet being used to its fullest advantage in CBIR systems. By integrating pixel-based and metadata-based image feature analysis, substantial advances of CBIR in medicine could ensue, with CBIR systems becoming an important tool in radiology practice

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore