157 research outputs found
Efficient Non-parametric Bayesian Hawkes Processes
In this paper, we develop an efficient nonparametric Bayesian estimation of
the kernel function of Hawkes processes. The non-parametric Bayesian approach
is important because it provides flexible Hawkes kernels and quantifies their
uncertainty. Our method is based on the cluster representation of Hawkes
processes. Utilizing the stationarity of the Hawkes process, we efficiently
sample random branching structures and thus, we split the Hawkes process into
clusters of Poisson processes. We derive two algorithms -- a block Gibbs
sampler and a maximum a posteriori estimator based on expectation maximization
-- and we show that our methods have a linear time complexity, both
theoretically and empirically. On synthetic data, we show our methods to be
able to infer flexible Hawkes triggering kernels. On two large-scale Twitter
diffusion datasets, we show that our methods outperform the current
state-of-the-art in goodness-of-fit and that the time complexity is linear in
the size of the dataset. We also observe that on diffusions related to online
videos, the learned kernels reflect the perceived longevity for different
content types such as music or pets videos
Semi-Supervised Kernel PCA
We present three generalisations of Kernel Principal Components Analysis
(KPCA) which incorporate knowledge of the class labels of a subset of the data
points. The first, MV-KPCA, penalises within class variances similar to Fisher
discriminant analysis. The second, LSKPCA is a hybrid of least squares
regression and kernel PCA. The final LR-KPCA is an iteratively reweighted
version of the previous which achieves a sigmoid loss function on the labeled
points. We provide a theoretical risk bound as well as illustrative experiments
on real and toy data sets
Support Vector Machines for Business Applications
This chapter discusses the usage of Support Vector Machines (SVM) for business applications. It provides a brief historical background on inductive learning and pattern recognition, and then an intuitive motivation for SVM methods. The method is compared to other approaches, and the tools and background theory required to successfully apply SVMs to business applications are introduced. The authors hope that the chapter will help practitioners to understand when the SVM should be the method of choice, as well as how to achieve good results in minimal time
Kernel Based Algebraic Curve Fitting
An algebraic curve is defined as the zero set of a multivariate polynomial. We consider the problem of fitting an algebraic curve to a set of vectors given an additional set of vectors labelled as interior or exterior to the curve. The problem of fitting a linear curve in this way is shown to lend itself to a support vector representation, allowing non-linear curves and high dimensional surfaces to be estimated using kernel functions. The approach is attractive due to the stability of solutions obtained, the range of functional forms made possible (including polynomials), and the potential for applying well understood regularisation operators from the theory of Support Vector Machines
- …