427 research outputs found

    Functional Renormalization Group for multi-orbital Fermi Surface Instabilities

    Full text link
    Technological progress in material synthesis, as well as artificial realization of condensed matter scenarios via ultra-cold atomic gases in optical lattices or epitaxial growth of thin films, is opening the gate to investigate a plethora of unprecedented strongly correlated electron systems. In a large subclass thereof, a metallic state of layered electrons undergoes an ordering transition below some temperature into unconventional states of matter driven by electronic correlations, such as magnetism, superconductivity, or other Fermi surface instabilities. While this type of phenomena has been a well-established direction of research in condensed matter for decades, the variety of today's accessible scenarios pose fundamental new challenges to describe them. A core complication is the multi-orbital nature of the low-energy electronic structure of these systems, such as the multi-d orbital nature of electrons in iron pnictides and transition-metal oxides in general, but also electronic states of matter on lattices with multiple sites per unit cell such as the honeycomb or kagome lattice. In this review, we propagate the functional renormalization group (FRG) as a suited approach to investigate multi-orbital Fermi surface instabilities. The primary goal of the review is to describe the FRG in explicit detail and render it accessible to everyone both at a technical and intuitive level. Summarizing recent progress in the field of multi-orbital Fermi surface instabilities, we illustrate how the unbiased fashion by which the FRG treats all kinds of ordering tendencies guarantees an adequate description of electronic phase diagrams and often allows to obtain parameter trends of sufficient accuracy to make qualitative predictions for experiments. This review includes detailed and illustrative illustrations of magnetism and, in particular, superconductivity for the iron pnictides from the viewpoint of FRG. Furthermore, it discusses candidate scenarios for topological bulk singlet superconductivity and exotic particle-hole condensates on hexagonal lattices such as sodium-doped cobaltates, graphene doped to van Hove Filling, and the kagome Hubbard model. In total, the FRG promises to be one of the most versatile and revealing numerical approaches to address unconventional Fermi surface instabilities in future fields of condensed matter research.Comment: 122 pages, 57 figures; manuscript for a review in Advances in Physics - suggestions welcome

    Unconventional Fermi surface instabilities in the Kagome Hubbard Model

    Full text link
    We investigate the competing Fermi surface instabilities in the Kagome tight-binding model. Specifically, we consider onsite and short-range Hubbard interactions in the vicinity of van Hove filling of the dispersive Kagome bands where the Fermiology promotes the joint effect of enlarged density of states and nesting. The sublattice interference mechanism [Kiesel and Thomale, Phys. Rev. B Rapid Comm., in press.] allows us to explain the intricate interplay between ferromagnetic fluctuations and other ordering tendencies. On the basis of functional renormalization group used to obtain an adequate low-energy theory description, we discover finite angular momentum spin and charge density wave order, a two-fold degenerate d-wave Pomeranchuk instability, and f-wave superconductivity away from van Hove filling. Together, this makes the Kagome Hubbard model the prototypical scenario for several unconventional Fermi surface instabilities.Comment: 4+e pages, 5 figure

    Anisotropic chiral d+id superconductivity in NaxCoO2 yH2O

    Full text link
    Since its discovery, the superconducting phase in water-intercalated sodium cobaltates NaxCoO2 yH2O (x~0.3, y~1.3) has posed fundamental challenges in terms of experimental investigation and theoretical understanding. By a combined dynamical mean-field and renormalization group approach, we find an anisotropic chiral d+id wave state as a consequence of multi-orbital effects, Fermi surface topology, and magnetic fluctuations. It naturally explains the singlet property and close-to-nodal gap features of the superconducting phase as indicated by experiments.Comment: 4 pages plus references, 5 figure

    Renormalization group analysis of competing quantum phases in the J1-J2 Heisenberg model on the kagome lattice

    Get PDF
    Recent discoveries in neutron scattering experiments for Kapellasite and Herbertsmithite as well as theoretical calculations of possible spin liquid phases have revived interest in magnetic phenomena on the kagome lattice. We study the quantum phase diagram of the S=1/2 Heisenberg kagome model as a function of nearest neighbor coupling J1 and second neighbor coupling J2. Employing the pseudofermion functional renormalization group, we find four types of magnetic quantum order (q=0 order, cuboc order, ferromagnetic order, and Sqrt{3}x\Sqrt{3} order) as well as extended magnetically disordered regions by which we specify the possible parameter regime for Kapellasite. In the disordered regime J2/J1<<1, the flatness of the magnetic susceptibility at the zone boundary which is observed for Herbertsmithite can be reconciled with the presence of small J2>0 coupling. In particular, we analyze the dimer susceptibilities related to different valence bond crystal (VBC) patterns, which are strongly inhomogeneous indicating the rejection of VBC order in the RG flow.Comment: 4+e pages, 3 figures; 2 pages of supplementary materia

    Spin-triplet superconductivity in a weak-coupling Hubbard model for the quasi-one-dimensional compound Li0.9_{0.9}Mo6_6O17_{17}

    Get PDF
    The purple bronze Li0.9_{0.9}Mo6_6O17_{17} is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.Comment: Update

    Phase diagram of the Hubbard model on the anisotropic triangular lattice

    Full text link
    We investigate the Hubbard model on the anisotropic triangular lattice as a suggested effective description of the Mott phase in various triangular organic compounds. Employing the variational cluster approximation and the ladder dual-fermion approach as complementary methods to adequately treat the zero-temperature and the finite-temperature domains, we obtain a consistent picture of the phase diagram as a function of anisotropy and interaction strength. The metal-insulator transition substantially depends on the anisotropy, and so does the nature of magnetism and the emergence of a nonmagnetic insulating phase. We further find that geometric anisotropy significantly influences the thermodynamics of the system. For increased frustration induced by anisotropy, the entropy of the system increases with interaction strength, opening the possibility of adiabatically cooling a frustrated system by an enhancement of electronic correlations.Comment: 13 pages, 15 figures; published versio

    Mechanism for a Pairing State with Time-Reversal Symmetry Breaking in Iron-Based Superconductors

    Full text link
    The multipocket Fermi surfaces of iron-based superconductors promote pairing states with both s_{+-}-wave and d_{x^2-y^2}-wave symmetry. We argue that the competition between these two order parameters could lead to a time-reversal-symmetry breaking state with s+id-pairing symmetry in the iron-based superconductors, and propose serveral scenarios in which this phase may be found. To understand the emergence of such a pairing state on a more rigorous footing, we start from a microscopic 5-orbital description representative for the pnictides. Using a combined approach of functional renormalization group and mean-field analysis, we identify the microscopic parameters of the s+id-pairing state. There, we find the most promising region for s+id-pairing in the electron doped regime with an enhanced pnictogen height
    • …
    corecore