342 research outputs found
Wave Period and Grain Size Controls on Short-Wave Suspended Sediment Transport Under Shoaling and Breaking Waves
Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics
We present the ProCS method for the rapid and accurate prediction of protein
backbone amide proton chemical shifts - sensitive probes of the geometry of key
hydrogen bonds that determine protein structure. ProCS is parameterized against
quantum mechanical (QM) calculations and reproduces high level QM results
obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is
interfaced with the PHAISTOS protein simulation program and is used to infer
statistical protein ensembles that reflect experimentally measured amide proton
chemical shift values. Such chemical shift-based structural refinements,
starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN
Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and
trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent
agreement with experiment. We show that the structural sensitivity of the
QM-based amide proton chemical shift predictions is needed to refine protein
structures to this agreement. The ProCS method thus offers a powerful new tool
for refining the structures of hydrogen bonding networks to high accuracy with
many potential applications such as protein flexibility in ligand binding.Comment: PLOS ONE accepted, Nov 201
- …