29,348 research outputs found

    On the choice of parameters in solar structure inversion

    Get PDF
    The observed solar p-mode frequencies provide a powerful diagnostic of the internal structure of the Sun and permit us to test in considerable detail the physics used in the theory of stellar structure. Amongst the most commonly used techniques for inverting such helioseismic data are two implementations of the optimally localized averages (OLA) method, namely the Subtractive Optimally Localized Averages (SOLA) and Multiplicative Optimally Localized Averages (MOLA). Both are controlled by a number of parameters, the proper choice of which is very important for a reliable inference of the solar internal structure. Here we make a detailed analysis of the influence of each parameter on the solution and indicate how to arrive at an optimal set of parameters for a given data set.Comment: 14 pages, 15 figures. Accepted for publication on MNRA

    Classification of String-like Solutions in Dilaton Gravity

    Get PDF
    The static string-like solutions of the Abelian Higgs model coupled to dilaton gravity are analyzed and compared to the non-dilatonic case. Except for a special coupling between the Higgs Lagrangian and the dilaton, the solutions are flux tubes that generate a non-asymptotically flat geometry. Any point in parameter space corresponds to two branches of solutions with two different asymptotic behaviors. Unlike the non-dilatonic case, where one branch is always asymptotically conic, in the present case the asymptotic behavior changes continuously along each branch.Comment: 15 pages, 6 figures. To be published in Phys. Rev.

    Correlated noise in networks of gravitational-wave detectors: subtraction and mitigation

    Get PDF
    One of the key science goals of advanced gravitational-wave detectors is to observe a stochastic gravitational-wave background. However, recent work demonstrates that correlated magnetic fields from Schumann resonances can produce correlated strain noise over global distances, potentially limiting the sensitivity of stochastic background searches with advanced detectors. In this paper, we estimate the correlated noise budget for the worldwide Advanced LIGO network and conclude that correlated noise may affect upcoming measurements. We investigate the possibility of a Wiener filtering scheme to subtract correlated noise from Advanced LIGO searches, and estimate the required specifications. We also consider the possibility that residual correlated noise remains following subtraction, and we devise an optimal strategy for measuring astronomical parameters in the presence of correlated noise. Using this new formalism, we estimate the loss of sensitivity for a broadband, isotropic stochastic background search using 1 yr of LIGO data at design sensitivity. Given our current noise budget, the uncertainty with which LIGO can estimate energy density will likely increase by a factor of ~4--if it is impossible to achieve significant subtraction. Additionally, narrowband cross-correlation searches may be severely affected at low frequencies f < 45 Hz without effective subtraction.Comment: 16 pages, 8 figure

    High temperature thermoelectric efficiency in Ba8Ga16Ge30

    Get PDF
    The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3