2 research outputs found
Synergistic coupling of thermomechanical loading and irradiation damage in Zircaloy-4
Abstract
This work addresses in-situ synergistic irradiation and thermomechanical loading of nuclear reactor components by linking new mechanistic understanding with crystal plasticity finite element modelling to describe the formation and thermal and mechanical annihilation of dislocation loops. A model of pressurised reactor cladding is constructed to extract realistic boundary conditions for crystal plasticity microstructural sub-modelling. Thermomechanical loads are applied to the sub-model to investigate (i) the unirradiated state, (ii) synergistic coupling of irradiation damage and thermal annihilation of dislocation loops, (iii) synergistic coupling of irradiation damage without thermal annihilation of dislocation loops, and (iv) a post-irradiated state. Results demonstrate that the synergistic coupling of irradiation damage and thermomechanical loads leads to the early onset of plasticity, which is exacerbated by the thermal annihilation of dislocations, while the post-irradiated case remains predominantly elastic due to substantial irradiation hardening. It is shown that full synergistic coupling leads to localisation of quantities linked with crack nucleation including geometrically necessary dislocations and stress
Simulation of crystal plasticity in irradiated metals: A case study on Zircaloy-4
A classical crystal plasticity formulation based on dislocation slip was extended to include the mechanisms of dislocation channelling, with associated strain softening which is observed in many alloys post irradiation. The performance of the model was evaluated against experimental data on Zircaloy-4, which included engineering stress-strain response and high-resolution digital image correlation strain mapping. Variants of the model were developed to evaluate the influence on the strain hardening law used, comparing hardening based on a linear relationship for effective plastic strain with that based on the evolution of geometrically necessary dislocations. In addition, governing equations for simulating the interaction between gliding dislocations with various types of irradiation defect were investigated; this included the comparison of isotropic and anisotropic interactions based on the resultant reaction segments for each interaction. It was shown that the engineering stress-strain response measured by experiment could be captured by many of the model variants, but the simulation of characteristic strain heterogeneity was more sensitive to the model used. Direct modelling of the HRDIC experiments indicated that the model successfully predicted the activation of slip systems in many cases and exhibited localised strain distribution as observed in the experiment. In all models localised kink band formation was predicted, which is not observed experimentally, which highlights limitations in modelling of softening materials with a local crystal plasticity approach and a required area of development going forward.</p