3,604 research outputs found

    Identification of Anaerobes in Clinical Specimens Comparison between the RapID ANA II System and the Bruker MALDI-TOF MS System utilized in the Clinical Laboratory

    Get PDF
    Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been revealed as an invaluable platform for identifying anaerobic bacteria in the clinical laboratory over traditional methods such as the RapID ANA II System. A qualitative comparison is made, through the analysis of methodologies and specifications, to determine whether the RapID ANA II system or Bruker MALDI-TOF MS is more suitable for identifying anaerobic organism in the clinical laboratory. Based on the data reviewed, the MALDI-TOF MS is a more intuitive platform within the clinical laboratory due to its increased specificity, cost-effectiveness, and shorten turnaround time for the identification of anaerobes

    Purification and characterization of a protein-tyrosine kinase encoded by the Abelson murine leukemia virus

    Get PDF
    Sequences termed v-abl, which encode the protein-tyrosine kinase activity of Abelson murine leukemia virus, have been expressed in Escherichia coli as a fusion product (ptabl50 kinase). This fusion protein contains 80 amino acids of SV40 small t and the 403 amino acid protein kinase domain of v-abl. We report here the purification and characterization of this kinase. The purified material contains two proteins (Mr = 59,800 and 57,200), both of which possess sequences derived from v-abl. Overall purification was 3,750-fold, with a 31% yield, such that 117 micrograms of kinase could be obtained from 40 g of E. coli within 6-7 days. The specific kinase activity is over 170 mumol of phosphate min-1 mumol-1, comparable to the most active protein- serine kinases. Kinase activity is insensitive to K+, Na+, Ca2+, Ca2+- calmodulin, cAMP, or cAMP-dependent protein kinase inhibitor. The Km for ATP is dependent on the concentration of the second substrate. GTP can also be used as a phosphate donor. The enzyme can phosphorylate peptides consisting of as few as two amino acids and, at a very low rate, free tyrosine. Incubation of the kinase with [gamma-32P]ATP results in incorporation of 1.0 mol of phosphate/mol of protein. This reaction, however, cannot be blocked by prior incubation with unlabeled ATP. Incubation of 32P-labeled kinase with either ADP or ATP results in the synthesis of [32P]ATP. This suggests the phosphotyrosine residue on the Abelson kinase contains a high energy phosphate bond

    Electrolyzer Exergy Analysis for an Environmental Control and Life Support System

    Get PDF
    An exergy based analysis of the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS) is conducted to assess its overall performance. Exergy is chosen as a measure of performance because it accounts for both the first and second laws of thermodynamics. The exergy efficiency of a system is first defined as the total exergy destroyed by the system relative to the total exergy input to the system. To determine the ECLSS exergy efficiency, the system is divided into constituent subsystems which in turn are divided into assemblies and components. Based on this system decomposition, exergy balances are derived for each assembly or component. Exergy balances and supporting calculations are implemented in MATLAB code. The major subsystems of the ECLSS considered in this analysis include the Atmosphere Revitalization Subsystem (ARS), Atmosphere Control and Supply Subsystem (ACS), Temperature and Humidity Control Subsystem (THC), Water Recovery and Management Subsystem (WRM), and Waste Management Subsystem (WM). This paper focuses on the ARS and its constituent assemblies and components. Exergy efficiency of the ARS and its constituent assemblies and components is first presented. The Oxygen Generation Assembly (OGA), an assembly within the ARS, is then highlighted because the exergy destruction by the OGA is a large magnitude contributor to the overall exergy destruction of the ECLSS. The OGA produces oxygen to meet the crew's metabolic demand via water electrolysis in a proton exchange membrane (PEM) electrolyzer. The exergy destruction of the OGA's PEM electrolyzer is a function of the amount of oxygen produced, which determines the necessary current density and voltage drop across the PEM electrolyzer. In addition, oxygen production in the PEM electrolyzer requires deviation from the Nernst potential, presenting trade-offs between the exergy efficiency and critical life support functions. The results of parametric studies of PEM electrolyzer performance are presented with an emphasis on the impacts of polarization and operational conditions on exergy efficiency

    Enabling Quantum Cybersecurity Analytics in Botnet Detection: Stable Architecture and Speed-up through Tree Algorithms

    Full text link
    For the first time, we enable the execution of hybrid machine learning methods on real quantum computers, with 100 data samples, and also with real-device-based simulations, with 5,000 data samples and thereby outperforming the current state of research of Suryotrisongko and Musashi from the year 2022 who were dealing with 1,000 data samples and not with simulations on quantum real devices but on quantum simulators (i.e. pure software-based emulators) only. Additionally, we beat their reported accuracy of 76.8% by an average accuracy of 89.0%, all of this in a total computation time of 382 seconds only. They did not report the execution time. We gain this significant progress by a two-fold strategy: First, we provide a stabilized quantum architecture that enables us to execute HQML algorithms on real quantum devices. Second, we design a new form of hybrid quantum binary classification algorithms that are based on Hoeffding decision tree algorithms. These algorithms lead to the mentioned speed-up through their batch-wise execution in order to drastically reduce the number of shots needed for the real quantum device compared to standard loop-based optimizers. Their incremental nature serves the purpose of big data online streaming for DGA botnet detection. These two steps allow us to apply hybrid quantum machine learning to the field of cybersecurity analytics on the example of DGA botnet detection and how quantum-enhanced SIEM and, thereby, quantum cybersecurity analytics is made possible. We conduct experiments using the library Qiskit with quantum simulator Aer as well as on three different real quantum devices from MS Azure Quantum, naming IonQ, Rigetti and Quantinuum. It is the first time that these tools have been combined.Comment: 33 pages, 6 figures, 6 table

    Deuterium concentration by chemically-refluxed ammonia-hydrogen exchange : Final report

    Get PDF
    Statement of responsibility on title-page reads E.A. Mason, M. Benedict, E.R. Chow, J.S. Baron"June 1969.""MIT-D14."Includes bibliographical references (leaves 89-92)Final report; June 1969U.S. Atomic Energy Commission Subcontract AX-210280MIT DSR- 7067

    Deuterium concentration by chemically-refluxed ammonia-hydrogen exchange : Supplementary reports

    Get PDF
    Statement of responsibility on title-page reads M. Benedict, E.A. Mason, E.R. Chow, J.S. Baron"June 1969.""MIT-D15."Includes bibliographical referencesU.S. Atomic Energy Commission Subcontract AX-210280MIT DSR- 7067

    Detection of (1,3)-β-d-Glucan in Cerebrospinal Fluid in Histoplasma Meningitis

    Get PDF
    The diagnosis of central nervous system (CNS) histoplasmosis is often difficult. Although cerebrospinal fluid (CSF) (1,3)-β-d-glucan (BDG) is available as a biological marker for the diagnosis of fungal meningitis, there are limited data on its use for the diagnosis of Histoplasma meningitis. We evaluated CSF BDG detection, using the Fungitell assay, in patients with CNS histoplasmosis and controls. A total of 47 cases and 153 controls were identified. The control group included 13 patients with a CNS fungal infection other than histoplasmosis. Forty-nine percent of patients with CNS histoplasmosis and 43.8% of controls were immunocompromised. The median CSF BDG level was 85 pg/ml for cases, compared to <31 pg/ml for all controls (P < 0.05) and 82 pg/ml for controls with other causes of fungal meningitis (P = 0.27). The sensitivity for detection of BDG in CSF was 53.2%, whereas the specificity was 86.9% versus all controls and 46% versus other CNS fungal infections. CSF BDG levels of ≥80 pg/ml are neither sensitive nor specific to support a diagnosis of Histoplasma meningitis

    A randomized controlled trial of a blended physical literacy intervention to support physical activity and health of primary school children

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.Background: The concept of physical literacy (PL) has been advocated as the need to create environments fostering sustainable engagement in PA. This study adopted ecological approach to evaluate the effectiveness of a blended PL intervention embedded into the school day to support children’s PA and health. Method: Designed as a three-arm randomized controlled trial, a total of 79 participants (59.5% girls) were randomly assigned to: the “Quantity + Quality” blended PL group combining sit–stand desks and play-based recess (SSPlay), the “Quality” group with play-based recess only (Play) or the control group. The intervention lasted for 13 weeks, and all the variables were collected at baseline, post-intervention and 3-month follow-up. Results: SSPlay and Play group significantly improved on two of the embodied PL domains, Physical Competence (− 2.96 vs − 5.15, p < 0.05) and Knowledge and Understanding (− 2.35 vs − 2.00, p < 0.05), total errors of cognitive flexibility (24.00 vs 12.92, p < 0.05), and this difference was maintained at follow-up (p < 0.05). Whilst there was no interaction effect between groups, and time effects were found for PA and planning from baseline to post-intervention. Conclusion: This was the first to adopt an ecological approach as an innovative strategy to provide the emergence of PA for children in Hong Kong. The blended intervention design that embedded both quantity and quality of PA into children’s school day has shown promise in supporting children’s all round development. PL intervention where environments are designed to increase the “Quantity + Quality” of children’s everyday interactions has led to improvements in PA and health outcomes, which may provide insights for future studies to adopt cost-friendly and feasible measures for promoting children’s PA in the school settings.publishedVersionInstitutt for lærerutdanning og friluftslivsstudier / Department of Teacher Education and Outdoor Studie
    corecore