20,162 research outputs found

    Extreme Huygens' metasurfaces based on quasi-bound states in the continuum

    Get PDF
    We introduce the concept and a generic approach to realize Extreme Huygens' Metasurfaces by bridging the concepts of Huygens' conditions and optical bound states in the continuum. This novel paradigm allows creating Huygens' metasurfaces whose quality factors can be tuned over orders of magnitudes, generating extremely dispersive phase modulation. We validate this concept with a proof-of-concept experiment at the near-infrared wavelengths, demonstrating all-dielectric Huygens' metasurfaces with different quality factors. Our study points out a practical route for controlling the radiative decay rate while maintaining the Huygens' condition, complementing existing Huygens' metasurfaces whose bandwidths are relatively broad and complicated to tune. This novel feature can provide new insight for various applications, including optical sensing, dispersion engineering and pulse-shaping, tunable metasurfaces, metadevices with high spectral selectivity, and nonlinear meta-optics

    Scaling of Coulomb pseudo-potential in s-wave narrow-band superconductors

    Full text link
    The Coulomb pseudo-potential μ\mu^* is extracted by fitting the numerically calculated transition temperature TcT_c of the Eliashberg-Nambu equation which is extended to incorporate the narrow-band effects, that is, the vertex correction and the frequency dependence of the screened Coulomb interaction. It is shown that even for narrow-band superconductors, where the fermi energy ϵF \epsilon_F is comparable with the phonon frequency ωph \omega_{ph}, the Coulomb pseudo-potential is a pertinent parameter, and is still given by μ=μ/[1+μln(ϵF/ωph)]\mu^* = \mu/[1+\mu \ln(\epsilon_F/\omega_{ph})] , provided ωph\omega_{ph} is appropriately scaled.Comment: 5 pages, 3 figures, accepted for publication by Phys. Rev.

    The dynamically induced Fermi arcs and Fermi pockets in two dimensions: a model for underdoped cuprates

    Full text link
    We investigate the effects of the dynamic bosonic fluctuations on the Fermi surface reconstruction in two dimensions as a model for the underdoped cuprates. At energies larger than the boson energy ωb\omega_b, the dynamic nature of the fluctuations is not important and the quasi-particle dispersion exhibits the shadow feature like that induced by a static long range order. At lower energies, however, the shadow feature is pushed away by the finite ωb\omega_b. The detailed low energy features are determined by the bare dispersion and the coupling of quasi-particles to the dynamic fluctuations. We present how these factors reconstruct the Fermi surface to produce the Fermi arcs or the Fermi pockets, or their coexistence. Our principal result is that the dynamic nature of the fluctuations, without invoking a yet-to-be-established translational symmetry breaking hidden order, can produce the Fermi pocket centered away from the (π/2,π/2)(\pi/2,\pi/2) towards the zone center which may coexist with the Fermi arcs. This is discussed in comparison with the experimental observations.Comment: Some comments and references were added and typos were corrected. The published version. 9 page
    corecore