346 research outputs found
Verb Physics: Relative Physical Knowledge of Actions and Objects
Learning commonsense knowledge from natural language text is nontrivial due
to reporting bias: people rarely state the obvious, e.g., "My house is bigger
than me." However, while rarely stated explicitly, this trivial everyday
knowledge does influence the way people talk about the world, which provides
indirect clues to reason about the world. For example, a statement like, "Tyler
entered his house" implies that his house is bigger than Tyler.
In this paper, we present an approach to infer relative physical knowledge of
actions and objects along five dimensions (e.g., size, weight, and strength)
from unstructured natural language text. We frame knowledge acquisition as
joint inference over two closely related problems: learning (1) relative
physical knowledge of object pairs and (2) physical implications of actions
when applied to those object pairs. Empirical results demonstrate that it is
possible to extract knowledge of actions and objects from language and that
joint inference over different types of knowledge improves performance.Comment: 11 pages, published in Proceedings of ACL 201
Connotation Frames: A Data-Driven Investigation
Through a particular choice of a predicate (e.g., "x violated y"), a writer
can subtly connote a range of implied sentiments and presupposed facts about
the entities x and y: (1) writer's perspective: projecting x as an
"antagonist"and y as a "victim", (2) entities' perspective: y probably dislikes
x, (3) effect: something bad happened to y, (4) value: y is something valuable,
and (5) mental state: y is distressed by the event. We introduce connotation
frames as a representation formalism to organize these rich dimensions of
connotation using typed relations. First, we investigate the feasibility of
obtaining connotative labels through crowdsourcing experiments. We then present
models for predicting the connotation frames of verb predicates based on their
distributional word representations and the interplay between different types
of connotative relations. Empirical results confirm that connotation frames can
be induced from various data sources that reflect how people use language and
give rise to the connotative meanings. We conclude with analytical results that
show the potential use of connotation frames for analyzing subtle biases in
online news media.Comment: 11 pages, published in Proceedings of ACL 201
Are Elephants Bigger than Butterflies? Reasoning about Sizes of Objects
Human vision greatly benefits from the information about sizes of objects.
The role of size in several visual reasoning tasks has been thoroughly explored
in human perception and cognition. However, the impact of the information about
sizes of objects is yet to be determined in AI. We postulate that this is
mainly attributed to the lack of a comprehensive repository of size
information. In this paper, we introduce a method to automatically infer object
sizes, leveraging visual and textual information from web. By maximizing the
joint likelihood of textual and visual observations, our method learns reliable
relative size estimates, with no explicit human supervision. We introduce the
relative size dataset and show that our method outperforms competitive textual
and visual baselines in reasoning about size comparisons.Comment: To appear in AAAI 201
Neural Motifs: Scene Graph Parsing with Global Context
We investigate the problem of producing structured graph representations of
visual scenes. Our work analyzes the role of motifs: regularly appearing
substructures in scene graphs. We present new quantitative insights on such
repeated structures in the Visual Genome dataset. Our analysis shows that
object labels are highly predictive of relation labels but not vice-versa. We
also find that there are recurring patterns even in larger subgraphs: more than
50% of graphs contain motifs involving at least two relations. Our analysis
motivates a new baseline: given object detections, predict the most frequent
relation between object pairs with the given labels, as seen in the training
set. This baseline improves on the previous state-of-the-art by an average of
3.6% relative improvement across evaluation settings. We then introduce Stacked
Motif Networks, a new architecture designed to capture higher order motifs in
scene graphs that further improves over our strong baseline by an average 7.1%
relative gain. Our code is available at github.com/rowanz/neural-motifs.Comment: CVPR 2018 camera read
Learning Interpretable Spatial Operations in a Rich 3D Blocks World
In this paper, we study the problem of mapping natural language instructions
to complex spatial actions in a 3D blocks world. We first introduce a new
dataset that pairs complex 3D spatial operations to rich natural language
descriptions that require complex spatial and pragmatic interpretations such as
"mirroring", "twisting", and "balancing". This dataset, built on the simulation
environment of Bisk, Yuret, and Marcu (2016), attains language that is
significantly richer and more complex, while also doubling the size of the
original dataset in the 2D environment with 100 new world configurations and
250,000 tokens. In addition, we propose a new neural architecture that achieves
competitive results while automatically discovering an inventory of
interpretable spatial operations (Figure 5)Comment: AAAI 201
Central Asian students' adjustment experiences at a ""globalized"" Korean University
This study investigated the academic and cultural experiences of undergraduate Central Asian students at a university in Ulsan, South Korea. The study was designed to examine the experiences of Central Asian students both in their adjustment to academic work, and to the cultural environment created by the internationalization policy of the university. Using ethnographic methods that included participant observation, an open-ended questionnaire, and interviews, we examined the policies for internationalization of higher education, and we described how the stakeholders are responding to the policies with their own adjustment strategies. The stakeholders featured in this study are students from the Central Asian republics enrolled at a Korean engineering university. We conclude with suggestions on the ways that institutions of higher education can better serve international students' integration into their new community.open
Identifying sources of opinions with conditional random fields and extraction patterns
Journal ArticleRecent systems have been developed for sentiment classification, opinion recognition, and opinion analysis (e.g., detecting polarity and strength). We pursue another aspect of opinion analysis: identifying the sources of opinions, emotions, and sentiments. We view this problem as an information extraction task and adopt a hybrid approach that combines Conditional Random Fields (Lafferty et al., 2001) and a variation of AutoSlog (Riloff, 1996a). While CRFs model source identification as a sequence tagging task, AutoSlog learns extraction patterns. Our results show that the combination of these two methods performs better than either one alone. The resulting system identifies opinion sources with 79:3% precision and 59:5% recall using a head noun matching measure, and 81:2% precision and 60:6% recall using an overlap measure
- …