34 research outputs found
A Graph-based Framework for Transmission of Correlated Sources over Broadcast Channels
In this paper we consider the communication problem that involves
transmission of correlated sources over broadcast channels. We consider a
graph-based framework for this information transmission problem. The system
involves a source coding module and a channel coding module. In the source
coding module, the sources are efficiently mapped into a nearly semi-regular
bipartite graph, and in the channel coding module, the edges of this graph are
reliably transmitted over a broadcast channel. We consider nearly semi-regular
bipartite graphs as discrete interface between source coding and channel coding
in this multiterminal setting. We provide an information-theoretic
characterization of (1) the rate of exponential growth (as a function of the
number of channel uses) of the size of the bipartite graphs whose edges can be
reliably transmitted over a broadcast channel and (2) the rate of exponential
growth (as a function of the number of source samples) of the size of the
bipartite graphs which can reliably represent a pair of correlated sources to
be transmitted over a broadcast channel.Comment: 36 pages, 9 figure
A graph-based framework for transmission of correlated sources over multiuser channels.
We consider a graph-based framework for transmission of correlated sources over multiuser channels. We show that a graph can be used as a discrete interface between the source coding and the channel coding for this multiterminal information transmission problem. We adopt a separation-based modular approach to this problem, involving a source coding module and a channel coding module. In the former module, the correlated sources are efficiently represented into correlated indices which can be associated with a graph. Then, in the latter module, these correlated indices, which correspond to the edges of this graph, can be reliably transmitted over the multiuser channel if the graph satisfies certain conditions. Here, the indices are encoded by using channel codewords which exploit the correlation structure of the messages. This leads to performance gains in terms of enlarging the class of correlated sources that, can be reliably transmitted over multiuser channels. We apply our graph-based approach to many-to-one (called the multiple access channel) and one-to-many (called the broadcast channel) communication scenarios which are multiuser communication problems with a variety of applications. In the multiple access channel, many transmitters want to send their sources which are correlated to a single joint receiver reliably over the given channel. In the broadcast channel, a single transmitter wishes to send correlated sources reliably to many receivers over the channel. As our main results for the multiple access channel, we provide achievable rate regions, which are information-theoretic characterizations of (1) the rate of exponential growth (as a function of the number of channel uses) of the size and the degrees of the bipartite graphs whose edges can be reliably transmitted over a multiple access channel, and (2) the rate of exponential growth (as a function of the number of source samples) of the size and the degrees of the bipartite graphs which can reliably represent a pair of correlated sources. Note that these two results can be combined only if two graphs satisfy certain conditions. We also give similar results for the broadcast channel.Ph.D.Applied SciencesElectrical engineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/125996/2/3224851.pd
A Study of Standardizing Frequencies Using Channel Raster for Underwater Wireless Acoustic Sensor Networks
In this paper, we propose the method to standardize acoustic frequencies for underwater wireless acoustic sensor networks (UWASNs) by applying the channel raster used in the terrestrial mobile communications. The standardization process includes: (1) Setting the available acoustic frequency band where a channel raster is employed via the frequency specification analysis of the state-of-the art underwater acoustic communication modems. (2) Defining the center frequencies and the channel numbers as a function of channel raster, and the upper limit of the value of channel raster. (3) Determining the value of the channel raster suitable for the available acoustic frequency band via simulations. To set the value, three performance metrics are considered: the collision rate, the idle spectrum rate, and the receiver computational complexity. The simulation results show that the collision rate and the idle spectrum rate according to the value of channel raster have a trade-off relationship, but the influence of channel raster on the two performance metrics is insignificant. However, the receiver computational complexity is enhanced remarkably as the value of channel raster increases. Therefore, setting the value of channel raster close to its upper limit is the most adequate in respect of mitigating the occurrence of a collision and enhancing the reception performance. The standardized frequencies based on channel raster can guarantee the frequency compatibility required for the emerging technologies like the Internet of Underwater Things (IoUT) or the underwater cognitive radio, but also improves the network performance by avoiding the arbitrary use of frequencies
A Feasibility Analysis of an Application-Based Partial Initialization (API) Protocol for Underwater Wireless Acoustic Sensor Networks
Initialization methods for underwater wireless acoustic sensor networks (UWASNs) have been proposed as a subset of other network protocols under the simple assumption that all the nodes in the network can be initialized at once. However, it is generally time- and energy-intensive to initialize all nodes in a UWASN due to unstable underwater channel conditions. To improve network efficiency, we propose the Application-based Partial Initialization (API) protocol, which initializes only the same number of nodes as the number of activated nodes required to run a specific application. Reducing the number of active nodes is also particularly advantageous underwater since the replacement of batteries is costly. To the best of our knowledge, the API is the first approach that initializes nodes partially according to applications. Thus, we investigate the feasibility of the API for a UWASN by analyzing its performance via simulations. From the results, it is shown that the API provides similar data statistics compared with the conventional full initialization that initializes all nodes. Moreover, the API outperforms the full initialization in terms of the initialization time and message overhead performances
A New Resource Allocation Protocol for the Backhaul of Underwater Cellular Wireless Networks
In this paper, an underwater base station initiating (UBSI) resource allocation is proposed for underwater cellular wireless networks (UCWNs), which is a new approach to determine the backhaul capacity of underwater base stations (UBSs). This backhaul is a communication link from a UBS to a UBS controller (UBSC). Contrary to conventional resource allocation protocols, a UBS initiates to re-determine its backhaul capacity for itself according to its queue status; it releases a portion of its backhaul capacity in the case of experiencing resource under-utilization, and also requests additional backhaul capacity to the UBSC if packet drops are caused due to queue-overflow. This protocol can be appropriate and efficient to the underwater backhaul link where the transmission rate is quite low and the latency is unneglectable. In order to investigate the applicability of the UBSI resource allocation protocol to the UCWN, its performance is extensively analyzed via system level simulations. In our analysis, considered performance measures include average packet drop rate, average resource utilization, average message overhead, and the reserved capacity of the UBSC. In particular, the simulation results show that our proposed protocol not only utilizes most of the given backhaul capacity (more than 90 percent of resource utilization on the average), but also reduces controlling message overheads induced by resource allocation (less than 2 controlling messages on the average). It is expected that the simulation results and analysis in this paper can be used as operating guidelines to apply our new resource allocation protocol for the UCWN
Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine
The purpose of this paper is to investigate the effects of using gas to liquid (GTL)-biodiesel blends as an alternative fuel on the physical properties as well as the combustion and emission reduction characteristics in a diesel engine. In order to assess the influence of the GTL-biodiesel blending ratio, the biodiesel is blended with GTL fuel, which is a test fuel with various blending ratios. The effects of GTL-biodiesel blends on the fuel properties, heat release, and emission characteristics were studied at various fuel injection timing and blending ratios. The test fuels investigated here were GTL, biodiesel, and biodiesel blended GTL fuels. The biodiesel blending ratio was changed from 0%, 20% and 40% by a volume fraction. The GTL-biodiesel fuel properties such as the fuel density, viscosity, lower heating value, and cetane number were analyzed in order to compare the effects of different mixing ratios of the biodiesel fuel. Based on the experimental results, certain meaningful results were derived. The increasing rate of the density and kinematic viscosity of the GTL-biodiesel blended fuels at various temperature conditions was increased with the increase in the biodiesel volumetric fraction. The rate of density changes between biodiesel-GTL and GTL are 2.768% to 10.982%. The combustion pressure of the GTL fuel showed a higher pressure than the biodiesel blended GTL fuels. The biodiesel-GTL fuel resulted in reduced NOx and soot emissions compared to those of the unblended GTL fuel. Based on the experimental results, the ignition delay of the GTL-biodiesel blends increased with the increase of the biodiesel blending ratio because of the low cetane number of biodiesel compared to GTL. As the injection timing is advanced, the NOx emissions were significantly increased, while the effect of the injection timing on the soot emission was small compared to the NOx emissions. In the cases of the HC and CO emissions, the GTL-biodiesel blended fuels resulted in similar low emission trends and, in particular, the HC emissions showed a slight increase at the range of advanced injection timings