805 research outputs found
Is It Possible to Precisely Monitor Thyroid Function as It Transitions from Hashimoto’s to Grave’s Diseases?
Thyroid function needs to be carefully assessed during the shift from Hashimoto’s to Graves’ disease, using important markers such as thyroid stimulating hormone (TSH) levels, thyroid antibodies, and ultrasound imaging. TSH levels play a crucial role in the diagnosis and treatment of thyroid disorders, since increased levels indicate an underactive thyroid (Hashimoto’s) and decreased levels indicate an overactive thyroid (Graves’). Furthermore, the identification of certain antibodies such as anti-thyroglobulin and anti-thyroperoxidase can aid in distinguishing between the two autoimmune disorders. Ultrasound imaging provides further information by visually representing the dimensions and composition of the thyroid gland, aiding in the early identification of nodules or enlargement linked to both pathological conditions. Consistent surveillance and cooperation among healthcare practitioners are essential for efficiently handling the shift from Hashimoto’s to Graves’ disease, guaranteeing the best possible results for patients
Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer
Magnetic skyrmions have fast evolved from a novelty, as a realization of
topologically protected structure with particle-like character, into a
promising platform for new types of magnetic storage. Significant engineering
progress was achieved with the synthesis of compounds hosting room-temperature
skyrmions in magnetic heterostructures, with the interfacial
Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation.
Here we report findings of ultrathin skyrmion formation in a few layers of
SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer.
Measurement of the topological Hall effect (THE) reveals a robust stability of
skyrmions in this platform, judging from the high value of the critical field
1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as
much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up
to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film
proves the rumpling of the Ru-O plane to be the source of inversion symmetry
breaking and DMI. First-principles calculations based on the structure obtained
from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the
main source of skyrmion robustness. These features promise a few-layer SRO to
be an important new platform for skyrmionics, without the necessity of
introducing the capping layer to boost the spin-orbit coupling strength
artificially.Comment: Supplementary Information available upon reques
Tracking the Mn diffusion in the carbon-supported nanoparticles through the collaborative analysis of atom probe and evaporation simulation
Carbon-supported nanoparticles have been used widely as efficient catalysts
due to their enhanced surface-to-volume ratio. To investigate their
structure-property relationships, acquiring 3D elemental distribution is highly
required. Here, the carbon-supported Pt, PtMn alloy, and ordered Pt3Mn
nanoparticles are synthesized and analyzed with atom probe tomography as model
systems. The significant difference of Mn distribution after the heat-treatment
was found. Finally, the field evaporation behavior of the carbon support was
discussed and each acquired reconstruction was compared with computational
results from the evaporation simulation. This paper provides a guideline for
studies using atom probe tomography on the heterogeneous carbon-nanoparticle
system that leads to insights toward to a wide application in carbon-supported
nano-catalysts
Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer
Magnetic skyrmions have fast evolved from a novelty, as a realization of
topologically protected structure with particle-like character, into a
promising platform for new types of magnetic storage. Significant engineering
progress was achieved with the synthesis of compounds hosting room-temperature
skyrmions in magnetic heterostructures, with the interfacial
Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation.
Here we report findings of ultrathin skyrmion formation in a few layers of
SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer.
Measurement of the topological Hall effect (THE) reveals a robust stability of
skyrmions in this platform, judging from the high value of the critical field
1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as
much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up
to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film
proves the rumpling of the Ru-O plane to be the source of inversion symmetry
breaking and DMI. First-principles calculations based on the structure obtained
from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the
main source of skyrmion robustness. These features promise a few-layer SRO to
be an important new platform for skyrmionics, without the necessity of
introducing the capping layer to boost the spin-orbit coupling strength
artificially.Comment: Supplementary Information available upon reques
miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol
Background: It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods: Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results: We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions: Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.This work was supported an Eco-Technopia 21 project grant from the Ministry of Environment (Development of Decision Method of Chromosomal Abnormality in Reproductive System by Toxic Substances at the Korea Institute of Toxicology)
Association between ocean literacy and climate change mitigation efforts in the Republic of Korea
Promoting ocean literacy can lead to numerous benefits, such as improved marine ecosystem comprehension, responsible environmental behavior, and support for marine conservation policies. However, past research focused on the contribution of ocean literacy to the public's support for marine policy and management, failing to expand the concept to broader issues like climate change. This study aims to assess people's ocean literacy and its association with climate change mitigation behaviors, using a nationally representative survey that collected 2000 responses in the Republic of Korea in November 2022. The results provide evidence that people with a better understanding of the ocean are more likely to follow recommendations for climate change mitigation, including reducing disposable products, using public transportation, and using eco-friendly products. This association was robust against varying levels of climate change risk perception. These findings imply that promoting public ocean literacy can be an effective strategy for encouraging people to engage in efforts to mitigate climate change in their daily lives
Recommended from our members
Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping.
Identifying material parameters affecting properties of ferromagnets is key to optimized materials that are better suited for spintronics. Magnetic anisotropy is of particular importance in van der Waals magnets, since it not only influences magnetic and spin transport properties, but also is essential to stabilizing magnetic order in the two-dimensional limit. Here, we report that hole doping effectively modulates the magnetic anisotropy of a van der Waals ferromagnet and explore the physical origin of this effect. Fe3-xGeTe2 nanoflakes show a significant suppression of the magnetic anisotropy with hole doping. Electronic structure measurements and calculations reveal that the chemical potential shift associated with hole doping is responsible for the reduced magnetic anisotropy by decreasing the energy gain from the spin-orbit induced band splitting. Our findings provide an understanding of the intricate connection between electronic structures and magnetic properties in two-dimensional magnets and propose a method to engineer magnetic properties through doping
Analysis Technique on Water Permeability in Concrete with Cold Joint considering Micro Pore Structure and Mineral Admixture
Cold joint in concrete due to delayed concrete placing may cause a reduced shear resistance and increased water permeation. This study presents an analytical model based on the concept of REV (Representative Element Volume) to assess the effect of water permeability in cold joint concrete.
Here, OPC (Ordinary Portland Cement) concrete samples with cold joint are prepared and WPT (Water Permeability Test) is performed on the samples cured for 91 days. In order to account for the effect of GGBFS (Granulated Ground Blast Furnace Slag) on water permeability, concrete samples with the same W/B (Water to Binder) ratio and 40% replacement ratio of GGBFS are tested as well. Utilizing the previous models handling porosity and saturation, the analysis technique for equivalent water permeability with effective cold joint width is proposed. Water permeability in cold joint increases to 140.7% in control case but it decreases to 120.7% through GGBFS replacement. Simulation results agree reasonably well with experimental data gathered for sound and cold joint concrete
Hepatitis C Virus Core Protein Inhibits Interleukin 12 and Nitric Oxide Production from Activated Macrophages
AbstractA characteristic feature of hepatitis C virus (HCV) infection is a high frequency of persistence and the progression to chronic liver diseases. Recent data suggest that prevalent T helper (Th) 2 immunity as well as weak HCV-specific T-cell response is associated with viral persistence. Here, we showed that the production of interleukin 12 (IL-12) and nitric oxide (NO) that is critical for the induction of Th1 and innate immunity, but not that of tumor necrosis factor α (TNF-α), was significantly suppressed in both HCV core-expressing macrophage cell lines and mouse peritoneal macrophages treated with recombinant core protein. In addition, IL-12 p40 promoter activity was repressed by the presence of HCV core in macrophages stimulated with lipopolysaccharride (LPS) following IFN-γ treatment, indicating that IL-12 production may be downregulated at the transcriptional level. We also found that proliferation of T cells and IFN-γ production in mixed lymphocyte reactions (MLR) with core-expressing cells were inhibited. Taken together, our results suggest that HCV core protein could play roles in suppressing the induction of Th1 immunity through inhibition of IL-12 and NO production
Anti-Inflammatory Effects of Inonotus obliquus in Colitis Induced by Dextran Sodium Sulfate
A total of 28 male BALB/c mice (average weight 20.7 ± 1.6 g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-α and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-α, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells
- …