6,632 research outputs found

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Effect of Indigenous Herbs on Growth, Blood Metabolites and Carcass Characteristics in the Late Fattening Period of Hanwoo Steers

    Get PDF
    This study was conducted to evaluate the effects of indigenous herbal supplements on growth, blood metabolites and carcass characteristics in the late fattening period of Hanwoo steers. In a 6 month feeding trial, thirty Hanwoo steers (647±32 kg) were allotted to one of 5 treatment groups, control (basal diet contained lasalocid), licorice, clove, turmeric and silymarin, with six steers per pen. All groups received ad libitum concentrate and 1 kg rice straw/animal/d throughout the feeding trial. Blood samples were collected at the beginning, middle, and the end of the experiment and the steers were slaughtered at the end. Blood glucose, triglyceride, total protein, and albumin concentrations were higher in the turmeric treatment compared with other treatments. Blood urea nitrogen and creatinine concentrations were highest (p<0.003 and p = 0.071, respectively) in steers treated with silymarin. Alanine aminotransferase activity was lower (p<0.06) for licorice and silymarin compared with the control group. There were no alterations in serum aspartate aminotransferase and gamma glutamyltransferase activities as a consequence of herb treatments (p = 0.203 and 0.135, respectively). Final body weight, body weight gain, average dairy gain and dry matter intake were not significantly different among treatments. Yield grade, marbling score and quality grade were higher for silymarin group than those of the control group (p<0.05). Therefore, the results suggest that silymarin can be used an effective dietary supplement as an alternative to antibiotic feed additive and a productivity enhancer, providing safe and more consumer acceptable alternative to synthetic compounds during the late fattening period of steers

    Activation of COX-2/PGE2 Promotes Sapovirus Replication via the Inhibition of Nitric Oxide Production.

    Get PDF
    Enteric caliciviruses in the genera Norovirus and Sapovirus are important pathogens that cause severe acute gastroenteritis in both humans and animals. Cyclooxygenases (COXs) and their final product, prostaglandin E2 (PGE2), are known to play important roles in the modulation of both the host response to infection and the replicative cycles of several viruses. However, the precise mechanism(s) by which the COX/PGE2 pathway regulates sapovirus replication remains largely unknown. In this study, infection with porcine sapovirus (PSaV) strain Cowden, the only cultivable virus within the genus Sapovirus, markedly increased COX-2 mRNA and protein levels at 24 and 36 h postinfection (hpi), with only a transient increase in COX-1 levels seen at 24 hpi. The treatment of cells with pharmacological inhibitors, such as nonsteroidal anti-inflammatory drugs or small interfering RNAs (siRNAs) against COX-1 and COX-2, significantly reduced PGE2 production, as well as PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We observed that pharmacological inhibition of COX-2 dramatically increased NO production, causing a reduction in PSaV replication that could be restored by inhibition of nitric oxide synthase via the inhibitor N-nitro-l-methyl-arginine ester. This study identified a pivotal role for the COX/PGE2 pathway in the regulation of NO production during the sapovirus life cycle, providing new insights into the life cycle of this poorly characterized family of viruses. Our findings also reveal potential new targets for treatment of sapovirus infection. IMPORTANCE: Sapoviruses are among the major etiological agents of acute gastroenteritis in both humans and animals, but little is known about sapovirus host factor requirements. Here, using only cultivable porcine sapovirus (PSaV) strain Cowden, we demonstrate that PSaV induced the vitalization of the cyclooxygenase (COX) and prostaglandin E2 (PGE2) pathway. Targeting of COX-1/2 using nonsteroidal anti-inflammatory drugs (NSAIDs) such as the COX-1/2 inhibitor indomethacin and the COX-2-specific inhibitors NS-398 and celecoxib or siRNAs targeting COXs, inhibited PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We further demonstrate that the production of PGE2 provides a protective effect against the antiviral effector mechanism of nitric oxide. Our findings uncover a new mechanism by which PSaV manipulates the host cell to provide an environment suitable for efficient viral growth, which in turn can be a new target for treatment of sapovirus infection.Wellcome Trust (097997/Z/11/Z); Grant (2014R1A2A2A01004292) of Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning, the Korea Basic Science Institute grant (C33730), and Bio-industry Technology Development Program (315021-04) funded by the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea

    Measurement of cosmogenic 9^9Li and 8^8He production rates at RENO

    Full text link
    We report the measured production rates of unstable isotopes 9^9Li and 8^8He produced by cosmic muon spallation on 12^{12}C using two identical detectors of the RENO experiment. Their beta-decays accompanied by a neutron make a significant contribution to backgrounds of reactor antineutrino events in precise determination of the smallest neutrino mixing angle. The mean muon energy of its near (far) detector with an overburden of 120 (450) m.w.e. is estimated as 33.1 +- 2.3 (73.6 +- 4.4) GeV. Based on roughly 3100 days of data, the cosmogenic production rate of 9^9Li (8^8He) isotope is measured to be 44.2 +- 3.1 (10.6 +- 7.4) per day at near detector and 10.0 +- 1.1 (2.1 +- 1.5) per day at far detector. This corresponds to yields of 9^9Li (8^8He), 4.80 +- 0.36 (1.15 +- 0.81) and 9.9 +- 1.1 (2.1 +- 1.5) at near and far detectors, respectively, in a unit of 108^{-8} μ1\mu^{-1} g1{^-1} cm2{^2}. Combining the measured 9^9Li yields with other available underground measurements, an excellent power-law relationship of the yield with respect to the mean muon energy is found to have an exponent of α\alpha = 0.76 +- 0.05.Comment: 11 pages, 14 figure

    Search for Sub-eV Sterile Neutrino at RENO

    Full text link
    We report a search result for a light sterile neutrino oscillation with roughly 2200 live days of data in the RENO experiment. The search is performed by electron antineutrino (νe\overline{\nu}_e) disappearance taking place between six 2.8 GWth_{\text{th}} reactors and two identical detectors located at 294 m (near) and 1383 m (far) from the center of reactor array. A spectral comparison between near and far detectors can explore reactor νe\overline{\nu}_e oscillations to a light sterile neutrino. An observed spectral difference is found to be consistent with that of the three-flavor oscillation model. This yields limits on sin22θ14\sin^{2} 2\theta_{14} in the 104Δm4120.510^{-4} \lesssim |\Delta m_{41}^2| \lesssim 0.5 eV2^2 region, free from reactor νe\overline{\nu}_e flux and spectrum uncertainties. The RENO result provides the most stringent limits on sterile neutrino mixing at Δm4120.002|\Delta m^2_{41}| \lesssim 0.002 eV2^2 using the νe\overline{\nu}_e disappearance channel

    First Results from the AMoRE-Pilot neutrinoless double beta decay experiment

    Get PDF
    The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0νββ\nu\beta\beta) of 100^{100}Mo with \sim100 kg of 100^{100}Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from 48^{48}Ca-depleted calcium and 100^{100}Mo-enriched molybdenum (48depl^{48\textrm{depl}}Ca100^{100}MoO4_4). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot 0νββ0\nu\beta\beta search with a 111 kg\cdotd live exposure of 48depl^{48\textrm{depl}}Ca100^{100}MoO4_4 crystals. No evidence for 0νββ0\nu\beta\beta decay of 100^{100}Mo is found, and a upper limit is set for the half-life of 0νββ\nu\beta\beta of 100^{100}Mo of T1/20ν>9.5×1022T^{0\nu}_{1/2} > 9.5\times10^{22} y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range mββ(1.22.1)\langle m_{\beta\beta}\rangle\le(1.2-2.1) eV
    corecore