6,632 research outputs found
Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold
We have investigated the non-classical response of solid 4He confined in
porous gold set to torsional oscillation. When solid helium is grown rapidly,
nearly 7% of the solid helium appears to be decoupled from the oscillation
below about 200 mK. Dissipation appears at temperatures where the decoupling
shows maximum variation. In contrast, the decoupling is substantially reduced
in slowly grown solid helium. The dynamic response of solid helium was also
studied by imposing a sudden increase in the amplitude of oscillation. Extended
relaxation in the resonant period shift, suggesting the emergence of the
pinning of low energy excitations, was observed below the onset temperature of
the non-classical response. The motion of a dislocation or a glassy solid is
restricted in the entangled narrow pores and is not likely responsible for the
period shift and long relaxation
Effect of Indigenous Herbs on Growth, Blood Metabolites and Carcass Characteristics in the Late Fattening Period of Hanwoo Steers
This study was conducted to evaluate the effects of indigenous herbal supplements on growth, blood metabolites and carcass characteristics in the late fattening period of Hanwoo steers. In a 6 month feeding trial, thirty Hanwoo steers (647±32 kg) were allotted to one of 5 treatment groups, control (basal diet contained lasalocid), licorice, clove, turmeric and silymarin, with six steers per pen. All groups received ad libitum concentrate and 1 kg rice straw/animal/d throughout the feeding trial. Blood samples were collected at the beginning, middle, and the end of the experiment and the steers were slaughtered at the end. Blood glucose, triglyceride, total protein, and albumin concentrations were higher in the turmeric treatment compared with other treatments. Blood urea nitrogen and creatinine concentrations were highest (p<0.003 and p = 0.071, respectively) in steers treated with silymarin. Alanine aminotransferase activity was lower (p<0.06) for licorice and silymarin compared with the control group. There were no alterations in serum aspartate aminotransferase and gamma glutamyltransferase activities as a consequence of herb treatments (p = 0.203 and 0.135, respectively). Final body weight, body weight gain, average dairy gain and dry matter intake were not significantly different among treatments. Yield grade, marbling score and quality grade were higher for silymarin group than those of the control group (p<0.05). Therefore, the results suggest that silymarin can be used an effective dietary supplement as an alternative to antibiotic feed additive and a productivity enhancer, providing safe and more consumer acceptable alternative to synthetic compounds during the late fattening period of steers
Activation of COX-2/PGE2 Promotes Sapovirus Replication via the Inhibition of Nitric Oxide Production.
Enteric caliciviruses in the genera Norovirus and Sapovirus are important pathogens that cause severe acute gastroenteritis in both humans and animals. Cyclooxygenases (COXs) and their final product, prostaglandin E2 (PGE2), are known to play important roles in the modulation of both the host response to infection and the replicative cycles of several viruses. However, the precise mechanism(s) by which the COX/PGE2 pathway regulates sapovirus replication remains largely unknown. In this study, infection with porcine sapovirus (PSaV) strain Cowden, the only cultivable virus within the genus Sapovirus, markedly increased COX-2 mRNA and protein levels at 24 and 36 h postinfection (hpi), with only a transient increase in COX-1 levels seen at 24 hpi. The treatment of cells with pharmacological inhibitors, such as nonsteroidal anti-inflammatory drugs or small interfering RNAs (siRNAs) against COX-1 and COX-2, significantly reduced PGE2 production, as well as PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We observed that pharmacological inhibition of COX-2 dramatically increased NO production, causing a reduction in PSaV replication that could be restored by inhibition of nitric oxide synthase via the inhibitor N-nitro-l-methyl-arginine ester. This study identified a pivotal role for the COX/PGE2 pathway in the regulation of NO production during the sapovirus life cycle, providing new insights into the life cycle of this poorly characterized family of viruses. Our findings also reveal potential new targets for treatment of sapovirus infection. IMPORTANCE: Sapoviruses are among the major etiological agents of acute gastroenteritis in both humans and animals, but little is known about sapovirus host factor requirements. Here, using only cultivable porcine sapovirus (PSaV) strain Cowden, we demonstrate that PSaV induced the vitalization of the cyclooxygenase (COX) and prostaglandin E2 (PGE2) pathway. Targeting of COX-1/2 using nonsteroidal anti-inflammatory drugs (NSAIDs) such as the COX-1/2 inhibitor indomethacin and the COX-2-specific inhibitors NS-398 and celecoxib or siRNAs targeting COXs, inhibited PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We further demonstrate that the production of PGE2 provides a protective effect against the antiviral effector mechanism of nitric oxide. Our findings uncover a new mechanism by which PSaV manipulates the host cell to provide an environment suitable for efficient viral growth, which in turn can be a new target for treatment of sapovirus infection.Wellcome Trust (097997/Z/11/Z); Grant (2014R1A2A2A01004292) of Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning, the Korea Basic Science Institute grant (C33730), and Bio-industry Technology Development Program (315021-04) funded by the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea
Measurement of cosmogenic Li and He production rates at RENO
We report the measured production rates of unstable isotopes Li and
He produced by cosmic muon spallation on C using two identical
detectors of the RENO experiment. Their beta-decays accompanied by a neutron
make a significant contribution to backgrounds of reactor antineutrino events
in precise determination of the smallest neutrino mixing angle. The mean muon
energy of its near (far) detector with an overburden of 120 (450) m.w.e. is
estimated as 33.1 +- 2.3 (73.6 +- 4.4) GeV. Based on roughly 3100 days of data,
the cosmogenic production rate of Li (He) isotope is measured to be
44.2 +- 3.1 (10.6 +- 7.4) per day at near detector and 10.0 +- 1.1 (2.1 +- 1.5)
per day at far detector. This corresponds to yields of Li (He), 4.80 +-
0.36 (1.15 +- 0.81) and 9.9 +- 1.1 (2.1 +- 1.5) at near and far detectors,
respectively, in a unit of 10 g cm. Combining
the measured Li yields with other available underground measurements, an
excellent power-law relationship of the yield with respect to the mean muon
energy is found to have an exponent of = 0.76 +- 0.05.Comment: 11 pages, 14 figure
Search for Sub-eV Sterile Neutrino at RENO
We report a search result for a light sterile neutrino oscillation with
roughly 2200 live days of data in the RENO experiment. The search is performed
by electron antineutrino () disappearance taking place
between six 2.8 GW reactors and two identical detectors located
at 294 m (near) and 1383 m (far) from the center of reactor array. A spectral
comparison between near and far detectors can explore reactor
oscillations to a light sterile neutrino. An observed
spectral difference is found to be consistent with that of the three-flavor
oscillation model. This yields limits on in the
eV region, free from
reactor flux and spectrum uncertainties. The RENO result
provides the most stringent limits on sterile neutrino mixing at eV using the disappearance
channel
First Results from the AMoRE-Pilot neutrinoless double beta decay experiment
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search
for neutrinoless double beta decay (0) of Mo with
100 kg of Mo-enriched molybdenum embedded in cryogenic detectors
with a dual heat and light readout. At the current, pilot stage of the AMoRE
project we employ six calcium molybdate crystals with a total mass of 1.9 kg,
produced from Ca-depleted calcium and Mo-enriched molybdenum
(CaMoO). The simultaneous detection of
heat(phonon) and scintillation (photon) signals is realized with high
resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin
temperatures. This stage of the project is carried out in the Yangyang
underground laboratory at a depth of 700 m. We report first results from the
AMoRE-Pilot search with a 111 kgd live exposure of
CaMoO crystals. No evidence for
decay of Mo is found, and a upper limit is set for the
half-life of 0 of Mo of y at 90% C.L.. This limit corresponds to an effective
Majorana neutrino mass limit in the range eV
- …