3,105 research outputs found
Titania Nanomaterials Produced from Ti-Salt Flocculated Sludge in Water Treatment
Titania is the most widely used metal oxide for the applications of pigments, paper, solar cells and environmental purification. In order to meet the demand of a large amount of titania, our group has developed a novel process which could significantly lower the cost of waste disposal in water treatment, protect the environment and public health and yield economically valuable titania. Titanium tetrachloride (TiCl4) or titanium sulfate (Ti(SO4)2) as an alternative coagulant in water treatment has been explored for the removal of various pollutants from contaminated water or wastewater. Flocculation efficiencies of the Ti-salts were superior to those of Al- and Fe- salts with additional benefits in that a large amount of titania can be produced by calcinating the flocculated floc. The produced titania showed high photocatalytic activity for the removal of volatile organic compounds. The large amount of titania can be applied to pigments, environment and construction materials which require a lot of titania usages. This review paper presents an historical progress from fundamental to application in terms of the detailed production process, characterization, photoactivity of titania produced from Ti-salt flocculated sludge, and its various applications. © 2011 Springer Science+Business Media, LLC
Preparation and characterisation of titanium dioxide produced from Ti-salt flocculated sludge in water treatment
During the past few years, titanium salts were investigated as alternative coagulants for the removal of organic matter of different molecular sizes in contaminated water. The flocculation efficiency of Ti-salt was comparable to those of FeCl3 and Al2(SO4)3 salts, commonly used coagulants. Incinerated sludge-TiO2 showed higher surface area and photocatalytic activity than commercially available TiO2. Metal-doped forms were produced by adding coagulant aids such as iron (Fe-), aluminium (Al-) and (Ca-) calcium salts during Ti-salt flocculation to increase pH. Ca- and Al- doped TiO2 showed very high photocatalytic activity compared to Fe-doped TiO2. When tested in a pilot scale plant for treatment of dye wastewater to check practical feasibility of the novel process, the removal ratio of the chemical oxygen demand was comparable to those of commonly used coagulants but the settling of sludge was faster. The TiO2 generated after sludge incineration showed a high photocatalytic activity for degradation of volatile organic compounds and increased the rate of hydrogen production by water photosplitting. TiCl4 coagulant and TiO2 produced from different water sources with different concentrations had low acute toxicity compared to heavy metals and commercial TiO2 when examined based on D. Magna mortality. This paper presents the production, characterisation and the photoactivity of TiO2 produced from Ti-salt flocculated sludge. Different case studies are discussed to highlighted recent advances in this field
Far-infrared surface-plasmon quantum-cascade lasers at 21.5 mu m and 24 mu m wavelengths
Quantum-cascade lasers operating above 20 mum (at lambda similar to 21.5 mum and lambda similar to 24 mum) wavelength are reported. Pulsed operation was obtained up to 140 K and with a peak power of a few milliwatts at cryogenic temperatures. Laser action originates from interminiband transitions in "chirped" superlattice active regions. The waveguides are based on surface-plasmon modes confined at a metal-semiconductor interface. The wavelengths were chosen in order to avoid major phonon absorption bands, which are particularly strong at energies just above the reststrahlen band. We also report on a 21.5-mum-wavelength laser based on a two-sided interface-plasmon waveguide. (C) 2001 American Institute of Physics
Visible light responsive titanium dioxide (TiO<inf>2</inf>)
Titanium dioxide (TiO2) is one of the most researched semiconductor oxides that has revolutionised technologies in the field of environmental purification and energy generation. It has found extensive applications in heterogenous photocatalysis for removing organic pollutants from air and water and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability, But one of the critical limitations of TiO 2 as photocatalyst is its poor response to visible light. Several attempts have been made to modify the surface and electronic structures of TiO2 to enhance its activity in the visible light region such as noble metal deposition, metal ion loading, cationic and anionic doping and sensitisation, Most of the results improved photocatalytic performance under visible light irradiation. This paper attempts to review and update some of the information on the TiO2 photocatalytic technology and its accomplishment towards visible light region
Genetic diversity of Brazilian isolates of feline immunodeficiency virus
We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection
A simpler method of preprocessing MALDI-TOF MS data for differential biomarker analysis: stem cell and melanoma cancer studies
<p>Abstract</p> <p>Introduction</p> <p>Raw spectral data from matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) with MS profiling techniques usually contains complex information not readily providing biological insight into disease. The association of identified features within raw data to a known peptide is extremely difficult. Data preprocessing to remove uncertainty characteristics in the data is normally required before performing any further analysis. This study proposes an alternative yet simple solution to preprocess raw MALDI-TOF-MS data for identification of candidate marker ions. Two in-house MALDI-TOF-MS data sets from two different sample sources (melanoma serum and cord blood plasma) are used in our study.</p> <p>Method</p> <p>Raw MS spectral profiles were preprocessed using the proposed approach to identify peak regions in the spectra. The preprocessed data was then analysed using bespoke machine learning algorithms for data reduction and ion selection. Using the selected ions, an ANN-based predictive model was constructed to examine the predictive power of these ions for classification.</p> <p>Results</p> <p>Our model identified 10 candidate marker ions for both data sets. These ion panels achieved over 90% classification accuracy on blind validation data. Receiver operating characteristics analysis was performed and the area under the curve for melanoma and cord blood classifiers was 0.991 and 0.986, respectively.</p> <p>Conclusion</p> <p>The results suggest that our data preprocessing technique removes unwanted characteristics of the raw data, while preserving the predictive components of the data. Ion identification analysis can be carried out using MALDI-TOF-MS data with the proposed data preprocessing technique coupled with bespoke algorithms for data reduction and ion selection.</p
Validation of an arterial tortuosity measure with application to hypertension collection of clinical hypertensive patients
<p>Abstract</p> <p>Background</p> <p>Hypertension may increase tortuosity or twistedness of arteries. We applied a centerline extraction algorithm and tortuosity metric to magnetic resonance angiography (MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. The most commonly used arterial tortuosity measure is the distance factor metric (DFM). This study tested a DFM based measurement’s ability to detect increases in arterial tortuosity of hypertensives using existing images. Existing images presented challenges such as different resolutions which may affect the tortuosity measurement, different depths of the area imaged, and different artifacts of imaging that require filtering.</p> <p>Methods</p> <p>The stability and accuracy of alternative centerline algorithms was validated in numerically generated models and test brain MRA data. Existing images were gathered from previous studies and clinical medical systems by manually reading electronic medical records to identify hypertensives and negatives. Images of different resolutions were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured from a DFM curve and tested on numerically generated models as well as MRA images from two hypertensive and three negative control populations. Comparisons were made between different resolutions, different filters, hypertensives versus negatives, and different negative controls.</p> <p>Results</p> <p>In tests using numerical models of a simple helix, the measured tortuosity increased as expected with more tightly coiled helices. Interpolation reduced resolution-dependent differences in measured tortuosity. The Korean hypertensive population had significantly higher arterial tortuosity than its corresponding negative control population across multiple arteries. In addition one negative control population of different ethnicity had significantly less arterial tortuosity than the other two.</p> <p>Conclusions</p> <p>Tortuosity can be compared between images of different resolutions by interpolating from lower to higher resolutions. Use of a universal negative control was not possible in this study. The method described here detected elevated arterial tortuosity in a hypertensive population compared to the negative control population and can be used to study this relation in other populations.</p
Clinical significance of amyloid β positivity in patients with probable cerebral amyloid angiopathy markers
Purpose: We investigated the frequency and clinical significance of amyloid β (Aβ) positivity on PET in patients with cerebral amyloid angiopathy (CAA). /
Methods: We recruited 65 patients who met the modified Boston criteria for probable CAA. All underwent amyloid PET, MRI, APOE genotyping and neuropsychological testing, and we obtained information on MRI markers of CAA and ischemic cerebral small-vessel disease (CSVD). We investigated the CAA/ischemic CSVD burden and APOE genotypes in relation to Aβ positivity and investigated the effect of Aβ positivity on longitudinal cognitive decline. /
Results: Among the 65 CAA patients, 43 (66.2%) showed Aβ PET positivity (Aβ+). Patients with Aβ+ CAA had more lobar microbleeds (median 9, interquartile range 2–41, vs. 3, 2–8; P = 0.045) and a higher frequency of cortical superficial siderosis (34.9% vs. 9.1%; P = 0.025), while patients with Aβ− CAA had more lacunes (1, 0–2, vs. 0, 0–1; P = 0.029) and a higher frequency of severe white matter hyperintensities (45.5% vs. 20.9%; P = 0.040). The frequency of ε4 carriers was higher in Aβ+ patients (57.1%) than in Aβ− patients (18.2%; P = 0.003), while the frequency of ε2 carriers did not differ between the two groups. Finally, Aβ positivity was associated with faster decline in multiple cognitive domains including language (P < 0.001), visuospatial function (P < 0.001), and verbal memory (P < 0.001) in linear mixed effects models. /
Conclusion: Our findings suggest that a significant proportion of patients with probable CAA in a memory clinic are Aβ− on PET. Aβ positivity in CAA patients is associated with a distinct pattern of CSVD biomarker expression, and a worse cognitive trajectory. Aβ positivity has clinical relevance in CAA and might represent either advanced CAA or additional Alzheimer’s disease neuropathological changes
- …