3 research outputs found
MOESM1 of Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana
Additional file 1: Table S1. Statistics of NGS libraries mapped to reference genome. Table S2. Plastid RNA edits in Phalaenopsis orchid. Table S3. Plastid RNA edits in protein-coding transcripts among land plants. Table S4. Plastid RNA edits in rpo transcripts among 18 species of higher plants. Table S5. Comparative analysis of plastid RNA edits from flower tissue by two different bioinformatic approaches. Figure S1. The editing efficiency of plastid RNA edits in leaf and floral tissues. Figure S2. The density of RNA editing sites in protein-coding transcripts. Figure S3. RNA editing in protein-coding transcripts. Figure S4. Nearest-neighbor bias toward a U_A context immediately before and after plastid RNA edits in moth orchid. Figure S5. The prediction of RNA secondary structures formed by the unedited and edited plastid transcripts in moth orchid
Two hypotheses for the evolutionary derivation of the cluster in IRs of monocots from an like ancestor
Arrow lines coded by different colors indicate distinct evolutionary pathways. Arrowheads denote possible breakpoints when DSB events occurred (different DSB colors are associated with different IR expansions). The light blue arrow line refers to a scenario in which a type II IR-LSC junction was established (see Fig. 1) in some eudicots (note that the residue is situated between and in IR). The grey area in each cpDNA molecule highlights the IRs at all evolutionary stages.<p><b>Copyright information:</b></p><p>Taken from "Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots"</p><p>http://www.biomedcentral.com/1471-2148/8/36</p><p>BMC Evolutionary Biology 2008;8():36-36.</p><p>Published online 31 Jan 2008</p><p>PMCID:PMC2275221.</p><p></p
The Effects of Fluorine-Contained Molecules on Improving the Polymer Solar Cell by Curing the Anomalous S‑Shaped <i>I</i>–<i>V</i> Curve
In this study, we investigate the
effects of fluorinated polyÂ(3,4-ethylene dioxythiophene):polyÂ(styrenesulfonate)
buffer layer on the performance of polymer photovoltaic cells. We
demonstrate for the first time, the deterioration of the device performance
can be effectively mended by modifying the interface between the active
layer and buffer layer with heptadecafluoro-1,1,2,2-tetra-hydro-decyl
trimethoxysilane (PFDS) and perfluorononane. Device performance shows
a substantial enhancement of short-circuit current from 7.90 to 9.39
mA/cm<sup>2</sup> and fill factor from 27% to 53%. The overall device
efficiency was improved from 0.98% to 3.12% for PFDS modified device.
The mechanism of S-shape curing is also discussed. In addition, the
stability of modified devices shows significant improvement than those
without modification. The efficiency of the modified devices retains
about half (1.88%) of its initial efficiency (4.1%) after 30 d compared
to the unmodified ones (0.61%), under air atmosphere