6,333 research outputs found

    Evaluation of the importance of spin-orbit couplings in the nonadiabatic quantum dynamics with quantum fidelity and with its efficient "on-the-fly" ab initio semiclassical approximation

    Get PDF
    We propose to measure the importance of spin-orbit couplings (SOCs) in the nonadiabatic molecular quantum dynamics rigorously with quantum fidelity. To make the criterion practical, quantum fidelity is estimated efficiently with the multiple-surface dephasing representation (MSDR). The MSDR is a semiclassical method that includes nuclear quantum effects through interference of mixed quantum-classical trajectories without the need for the Hessian of potential energy surfaces. Two variants of the MSDR are studied, in which the nuclei are propagated either with the fewest-switches surface hopping or with the locally mean field dynamics. The fidelity criterion and MSDR are first tested on one-dimensional model systems amenable to numerically exact quantum dynamics. Then, the MSDR is combined with "on-the-fly" computed electronic structure to measure the importance of SOCs and nonadiabatic couplings (NACs) in the photoisomerization dynamics of CH2NH2+ considering 20 electronic states and in the collision of F + H2 considering six electronic states.Comment: 9 pages, 3 figures, submitted to J. Chem. Phy

    Bifurcation in Rotational Spectra of Nonlinear AB2_2 Molecules

    Full text link
    A classical microscopic theory of rovibrational motion at high angular momenta in symmetrical non-linear molecules AB2_2 is derived within the framework of small oscillations near the stationary states of a rotating molecule. The full-dimensional analysis including stretching vibrations has confirmed the existence of the bifurcation predicted previously by means of the rigid-bender model. The formation of fourfold energy clusters has already been experimentally verified for H2_2Se and it has been demonstrated in fully-dimensional quantum mechanical calculations using the MORBID computer program. We show in the present work that apart from the level clustering, the bifurcation produces physically important effects including molecular symmetry-breaking and a transition from the normal mode to the local mode limit for the stretching vibrations due to rovibrational interaction. The application of the present theory with realistic molecular potentials to the H2_2Te, H2_2Se and H2_2S hydrides results in predictions of the bifurcation points very close to those calculated previously. However for the lighter H2_2O molecule we find that the bifurcation occurs at higher values of the total angular momentum than obtained in previous estimations. The present work shows it to be very unlikely that the bifurcation in H2_2O will lead to clustering of energy levels. This result is in agreement with recent variational calculations.Comment: latex, 19 pages including 2 figures provided as *.uu fil

    Visualising Java Coupling and Fault Proneness

    Get PDF
    In this paper, a tool is described for visualising the Coupling Between Objects (CBO) metric for Java systems, decomposing it into coupling collaborators and using colour to denote the object-oriented mechanisms at work for each couple. The resulting visualisation is also envisaged to be useful for general program comprehension and is integrated into Java development in the Eclipse IDE. Evidence is also given that the visualisation may help detect classes tending to be less fault-prone than would be expected from inspection of their CBO values alone

    A Comparison and Evaluation of Variants in the Coupling Between Objects Metric

    Get PDF
    The Coupling Between Objects metric (CBO) is a widely-used metric but, in practice, ambiguities in its correct implementation have led to different values being computed by different metric tools and studies. CBO has often been shown to correlate with defect occurrence in software systems, but the use of different calculations is commonly overlooked. This paper investigates the varying interpretations of CBO used by those metrics tools and researchers and defines a set of metrics representing the different computational approaches used. These metrics are calculated for a large-scale Java system and logistic regression used to correlate them with defect data obtained by analysing the system’s version tracking records. The different variations of CBO are shown to have significantly different correlations to defects. Regarding results, a clear binary divide was found between CBO values which, on the one hand, predicted a defect and, on the other, those that did not. The results, therefore, show that a clarification or unambiguous re-definition of CBO is both desirable and essential for a general consensus on its use. Moreover, applications of the metric must pay close attention to the actual method of calculation being used and, conclusions and comparisons made as a result

    Association of molecules using a resonantly modulated magnetic field

    Full text link
    We study the process of associating molecules from atomic gases using a magnetic field modulation that is resonant with the molecular binding energy. We show that maximal conversion is obtained by optimising the amplitude and frequency of the modulation for the particular temperature and density of the gas. For small modulation amplitudes, resonant coupling of an unbound atom pair to a molecule occurs at a modulation frequency corresponding to the sum of the molecular binding energy and the relative kinetic energy of the atom pair. An atom pair with an off-resonant energy has a probability of association which oscillates with a frequency and time-varying amplitude which are primarily dependent on its detuning. Increasing the amplitude of the modulation tends to result in less energetic atom pairs being resonantly coupled to the molecular state, and also alters the dynamics of the transfer from continuum states with off-resonant energies. This leads to maxima and minima in the total conversion from the gas as a function of the modulation amplitude. Increasing the temperature of the gas leads to an increase in the modulation frequency providing the best fit to the thermal distribution, and weakens the resonant frequency dependence of the conversion. Mean-field effects can alter the optimal modulation frequency and lead to the excitation of higher modes. Our simulations predict that resonant association can be effective for binding energies of order h×1h \times 1 MHz.Comment: 8 pages latex, figures revised, references updated and typos correcte

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D

    Sewing sound quantum flesh onto classical bones

    Full text link
    Semiclassical transformation theory implies an integral representation for stationary-state wave functions ψm(q)\psi_m(q) in terms of angle-action variables (θ,J\theta,J). It is a particular solution of Schr\"{o}dinger's time-independent equation when terms of order 2\hbar^2 and higher are omitted, but the pre-exponential factor A(q,θ)A(q,\theta) in the integrand of this integral representation does not possess the correct dependence on qq. The origin of the problem is identified: the standard unitarity condition invoked in semiclassical transformation theory does not fix adequately in A(q,θ)A(q,\theta) a factor which is a function of the action JJ written in terms of qq and θ\theta. A prescription for an improved choice of this factor, based on succesfully reproducing the leading behaviour of wave functions in the vicinity of potential minima, is outlined. Exact evaluation of the modified integral representation via the Residue Theorem is possible. It yields wave functions which are not, in general, orthogonal. However, closed-form results obtained after Gram-Schmidt orthogonalization bear a striking resemblance to the exact analytical expressions for the stationary-state wave functions of the various potential models considered (namely, a P\"{o}schl-Teller oscillator and the Morse oscillator).Comment: RevTeX4, 6 page

    Statistical Mechanics for Unstable States in Gel'fand Triplets and Investigations of Parabolic Potential Barriers

    Full text link
    Free energies and other thermodynamical quantities are investigated in canonical and grand canonical ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates with complex energy eigenvalues in the conjugate space of Gel'fand triplet. The theory is applied to the systems containing parabolic potential barriers (PPB's). The entropy and energy productions from PPB systems are studied. An equilibrium for a chemical process described by reactions A+CBAC+BA+CB\rightleftarrows AC+B is also discussed.Comment: 14 pages, AmS-LaTeX, no figur

    Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation

    Full text link
    We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping (FSSH) or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schr\"{o}dinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used to measure the importance of other terms present in the molecular Hamiltonian, such as diabatic couplings, spin-orbit couplings, or couplings to external fields, and to evaluate the accuracy of quantum dynamics with an approximate nonadiabatic Hamiltonian. The method is tested on three model problems introduced by Tully, on a two-surface model of dissociation of NaI, and a three-surface model including spin-orbit interactions. An example is presented that demonstrates the importance of often-neglected second-order nonadiabatic couplings.Comment: 14 pages, 4 figures, submitted to J. Chem. Phy
    corecore