6 research outputs found
Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3-xClx/FTO structure
Organolead halide perovskite materials open up a new era for developing low-cost and high efficiency solar cells due to their simple and inexpensive fabrication process, superior light absorption coefficient, and excellent charge mobility. In addition to solar cells, hybrid perovskites have also seen dynamic advances with rapidly expanded applications to many other exciting fields including electronic and optical devices. Here, we demonstrate a new type of bifunctional resistive switching memory device based on a very simple bilayer structure of Ag and a CHNHPbICl perovskite material on an FTO substrate with both digital and analog resistive switching characteristics. The bi-stable resistive switching behavior with reliable endurance over 10 times and a retention time of 4 Ć 10 s demonstrates that the Ag/CHNHPbICl/FTO device can be a promising candidate for RRAM. In the low voltage sweeping region, surprisingly, analog resistive switching behavior with potentiation and depression characteristics was also observed, which can be useful in neuromorphic computing device applications. The possible Ag conducting filaments formed by redox reactions of the Ag electrode may play a key role in this newly observed resistive switching phenomenon
Discovery and Characterization of a Novel MASTL Inhibitor MKI-2 Targeting MASTL-PP2A in Breast Cancer Cells and Oocytes
Although microtubule-associated serine/threonine kinase-like (MASTL) is a promising target for selective anticancer treatment, MASTL inhibitors with nano range potency and antitumor efficacy have not been reported. Here, we report a novel potent and selective MASTL inhibitor MASTL kinase inhibitor-2 (MKI-2) identified in silico through a drug discovery program. Our data showed that MKI-2 inhibited recombinant MASTL activity and cellular MASTL activity with IC50 values of 37.44 nM and 142.7 nM, respectively, in breast cancer cells. In addition, MKI-2 inhibited MASTL kinase rather than other AGC kinases, such as ROCK1, AKT1, PKACα, and p70S6K. Furthermore, MKI-2 exerted various antitumor activities by inducing mitotic catastrophe resulting from the modulation of the MASTL-PP2A axis in breast cancer cells. The MKI-2 treatment showed phenocopies with MASTL-null oocyte in mouse oocytes, which were used as a model to validate MKI-2 activity. Therefore, our study provided a new potent and selective MASTL inhibitor MKI-2 targeting the oncogenic MAST-PP2A axis in breast cancer cells.</jats:p
Discovery and Characterization of a Novel MASTL Inhibitor MKI-2 Targeting MASTL-PP2A in Breast Cancer Cells and Oocytes
Although microtubule-associated serine/threonine kinase-like (MASTL) is a promising target for selective anticancer treatment, MASTL inhibitors with nano range potency and antitumor efficacy have not been reported. Here, we report a novel potent and selective MASTL inhibitor MASTL kinase inhibitor-2 (MKI-2) identified in silico through a drug discovery program. Our data showed that MKI-2 inhibited recombinant MASTL activity and cellular MASTL activity with IC50 values of 37.44 nM and 142.7 nM, respectively, in breast cancer cells. In addition, MKI-2 inhibited MASTL kinase rather than other AGC kinases, such as ROCK1, AKT1, PKACα, and p70S6K. Furthermore, MKI-2 exerted various antitumor activities by inducing mitotic catastrophe resulting from the modulation of the MASTL-PP2A axis in breast cancer cells. The MKI-2 treatment showed phenocopies with MASTL-null oocyte in mouse oocytes, which were used as a model to validate MKI-2 activity. Therefore, our study provided a new potent and selective MASTL inhibitor MKI-2 targeting the oncogenic MAST-PP2A axis in breast cancer cells