379 research outputs found
PAT: a protein analysis toolkit for integrated biocomputing on the web
PAT, for Protein Analysis Toolkit, is an integrated biocomputing server. The main goal of its design was to facilitate the combination of different processing tools for complex protein analyses and to simplify the automation of repetitive tasks. The PAT server provides a standardized web interface to a wide range of protein analysis tools. It is designed as a streamlined analysis environment that implements many features which strongly simplify studies dealing with protein sequences and structures and improve productivity. PAT is able to read and write data in many bioinformatics formats and to create any desired pipeline by seamlessly sending the output of a tool to the input of another tool. PAT can retrieve protein entries from identifier-based queries by using pre-computed database indexes. Users can easily formulate complex queries combining different analysis tools with few mouse clicks, or via a dedicated macro language, and a web session manager provides direct access to any temporary file generated during the user session. PAT is freely accessible on the Internet at
EvDTree: structure-dependent substitution profiles based on decision tree classification of 3D environments
BACKGROUND: Structure-dependent substitution matrices increase the accuracy of sequence alignments when the 3D structure of one sequence is known, and are successful e.g. in fold recognition. We propose a new automated method, EvDTree, based on a decision tree algorithm, for automatic derivation of amino acid substitution probabilities from a set of sequence-structure alignments. The main advantage over other approaches is an unbiased automatic selection of the most informative structural descriptors and associated values or thresholds. This feature allows automatic derivation of structure-dependent substitution scores for any specific set of structures, without the need to empirically determine best descriptors and parameters. RESULTS: Decision trees for residue substitutions were constructed for each residue type from sequence-structure alignments extracted from the HOMSTRAD database. For each tree cluster, environment-dependent substitution profiles were derived. The resulting structure-dependent substitution scores were assessed using a criterion based on the mean ranking of observed substitution among all possible substitutions and in sequence-structure alignments. The automatically built EvDTree substitution scores provide significantly better results than conventional matrices and similar or slightly better results than other structure-dependent matrices. EvDTree has been applied to small disulfide-rich proteins as a test case to automatically derive specific substitutions scores providing better results than non-specific substitution scores. Analyses of the decision tree classifications provide useful information on the relative importance of different structural descriptors. CONCLUSIONS: We propose a fully automatic method for the classification of structural environments and inference of structure-dependent substitution profiles. We show that this approach is more accurate than existing methods for various applications. The easy adaptation of EvDTree to any specific data set opens the way for class-specific structure-dependent substitution scores which can be used in threading-based remote homology searches
The Role of Natural Killer Cells in Sepsis
Severe sepsis and septic shock are still deadly conditions urging to develop novel therapies. A better understanding of the complex modifications of the immune system of septic patients is needed for the development of innovative immunointerventions. Natural killer (NK) cells are characterized as CD3−NKp46+CD56+ cells that can be cytotoxic and/or produce high amounts of cytokines such as IFN-γ. NK cells are also engaged in crosstalks with other immune cells, such as dendritic cells, macrophages, and neutrophils. During the early stage of septic shock, NK cells may play a key role in the promotion of the systemic inflammation, as suggested in mice models. Alternatively, at a later stage, NK cells-acquired dysfunction could favor nosocomial infections and mortality. Standardized biological tools defining patients' NK cell status during the different stages of sepsis are mandatory to guide potential immuno-interventions. Herein, we review the potential role of NK cells during severe sepsis and septic shock
Campylobacter fetus Bacteremia Revealed by Cellulitis without Gastrointestinal Symptoms in the Context of Acquired Hypogammaglobulinemia: A Report of Three Cases
Campylobacter fetus bacteremia is rare and occurs mainly in patients with immunosuppression. This infection, which often involves secondary localizations has already been reported in some primary humoral immune deficiencies. We describe three cases of severe infection due to C. fetus with cellulitis at presentation, but without any gastrointestinal symptoms, occurring in patients with acquired hypogammaglobulinemia
New treatment options for lupus – a focus on belimumab
Belimumab is the first biologic approved for patients with systemic lupus erythematosus (SLE). Belimumab is the first of a new class of drug targeting B cell-stimulating factors or their receptors to reach the market. Its target, BLyS, also known as BAFF (B cell-activating factor from the tumor necrosis factor family), is a type II transmembrane protein that exists in both membrane-bound and soluble forms. Additionally to a robust rational from murine experiments conducted in lupus prone mice, BLyS circulating levels are increased in SLE patients. After the negative results of a Phase II trial, two Phase III trials met their primary endpoints. Some SLE patients are still refractory to the standard options of care or necessitate prolonged high-dose corticotherapy and/or long-term immunosuppressive regimens. However, some experts still feel that the effect of this biologic might not be clinically relevant and blame the use of the new systemic lupus response index as well as the discrepancies between both trials and the noninclusion of the severe form of the disease as nephritis. In this review, we aim to discuss the characteristics of belimumab, critically evaluate the different steps of its development, and consider its future place in the arsenal against SLE, taking into account the patients’ perspectives
Harnessing large language models (LLMs) for candidate gene prioritization and selection.
BACKGROUND: Feature selection is a critical step for translating advances afforded by systems-scale molecular profiling into actionable clinical insights. While data-driven methods are commonly utilized for selecting candidate genes, knowledge-driven methods must contend with the challenge of efficiently sifting through extensive volumes of biomedical information. This work aimed to assess the utility of large language models (LLMs) for knowledge-driven gene prioritization and selection.
METHODS: In this proof of concept, we focused on 11 blood transcriptional modules associated with an Erythroid cells signature. We evaluated four leading LLMs across multiple tasks. Next, we established a workflow leveraging LLMs. The steps consisted of: (1) Selecting one of the 11 modules; (2) Identifying functional convergences among constituent genes using the LLMs; (3) Scoring candidate genes across six criteria capturing the gene\u27s biological and clinical relevance; (4) Prioritizing candidate genes and summarizing justifications; (5) Fact-checking justifications and identifying supporting references; (6) Selecting a top candidate gene based on validated scoring justifications; and (7) Factoring in transcriptome profiling data to finalize the selection of the top candidate gene.
RESULTS: Of the four LLMs evaluated, OpenAI\u27s GPT-4 and Anthropic\u27s Claude demonstrated the best performance and were chosen for the implementation of the candidate gene prioritization and selection workflow. This workflow was run in parallel for each of the 11 erythroid cell modules by participants in a data mining workshop. Module M9.2 served as an illustrative use case. The 30 candidate genes forming this module were assessed, and the top five scoring genes were identified as BCL2L1, ALAS2, SLC4A1, CA1, and FECH. Researchers carefully fact-checked the summarized scoring justifications, after which the LLMs were prompted to select a top candidate based on this information. GPT-4 initially chose BCL2L1, while Claude selected ALAS2. When transcriptional profiling data from three reference datasets were provided for additional context, GPT-4 revised its initial choice to ALAS2, whereas Claude reaffirmed its original selection for this module.
CONCLUSIONS: Taken together, our findings highlight the ability of LLMs to prioritize candidate genes with minimal human intervention. This suggests the potential of this technology to boost productivity, especially for tasks that require leveraging extensive biomedical knowledge
An interactive web application for the dissemination of human systems immunology data
International audienceBackground: Systems immunology approaches have proven invaluable in translational research settings. The current rate at which large-scale datasets are generated presents unique challenges and opportunities. Mining aggregates of these datasets could accelerate the pace of discovery, but new solutions are needed to integrate the heterogeneous data types with the contextual information that is necessary for interpretation. In addition, enabling tools and technologies facilitating investigators' interaction with large-scale datasets must be developed in order to promote insight and foster knowledge discovery. Methods: State of the art application programming was employed to develop an interactive web application for browsing and visualizing large and complex datasets. A collection of human immune transcriptome datasets were loaded alongside contextual information about the samples. Results: We provide a resource enabling interactive query and navigation of transcriptome datasets relevant to human immunology research. Detailed information about studies and samples are displayed dynamically; if desired the associated data can be downloaded. Custom interactive visualizations of the data can be shared via email or social media. This application can be used to browse context-rich systems-scale data within and across systems immunology studies. This resource is publicly available online at [Gene Expression Browser Landing Page (https://gxb.benaroyaresearch.org/dm3/landing.gsp)]. The source code is also available openly [Gene Expression Browser Source Code (https://github.com/BenaroyaResearch/gxbrowser)]. Conclusions: We have developed a data browsing and visualization application capable of navigating increasingly large and complex datasets generated in the context of immunological studies. This intuitive tool ensures that, whether taken individually or as a whole, such datasets generated at great effort and expense remain interpretable and a ready source of insight for years to come
Knottin cyclization: impact on structure and dynamics
<p>Abstract</p> <p>Background</p> <p>Present in various species, the knottins (also referred to as inhibitor cystine knots) constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack.</p> <p>Results</p> <p>In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding.</p> <p>Conclusion</p> <p>In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity or protein stability. Unfolding simulations showed however that cyclization is a stabilizing factor in strongly denaturing conditions. This information should be useful if one wants to use the squash inhibitor scaffold in drug design.</p
Solution Structure of Human p8 MTCP1 , a Cysteine-rich Protein Encoded by the MTCP1 Oncogene, Reveals a New a a a-Helical Assembly Motif
International audienceMature-T-Cell Proliferation) is the ®rst gene unequivocally identi®ed in the group of uncommon leukemias with a mature phenotype. The three-dimensional solution structure of the human p8 MTCP1 protein encoded by the MTCP1 oncogene was determined by homonuc-lear proton two-dimensional NMR methods at 600 MHz. After sequence speci®c assignments, a total of 931 distance restraints and 57 dihedral restraints were collected. The location of the three previously unassigned disul®de bridges was determined from preliminary DIANA structures, using a statistical analysis of intercystinyl distances. The solution structure of p8 MTCP1 is presented as a set of 30 DIANA structures, further re®ned by restrained molecular dynamics using a simulated annealing protocol with the AMBER force ®eld. The r.m.s.d. values with respect to the mean structure for the backbone and all heavy atoms for a family of 30 structures are 0.73(AE0.28) and 1.17(AE0.23) A Ê , when the structured core of the protein (residues 5 to 63) is considered. The solution structure of p8 MTCP1 reveals an original scaffold consisting of three a helices, associated with a new cysteine motif. Two of the helices are covalently paired by two disul®de bridges, forming an a-hairpin which resembles an antiparallel coiled-coil. The third helix is oriented roughly parallel to the plane de®ned by the a-antiparallel motif and its axis forms an angle of %60 with respect to the main axis of this motif
Comportement mécanique d'un Assemblage Prothétique Dentaire
Le but de cette étude est d'étudier le comportement mécanique d'un assemblage prothétique dentaire (comportant une prothèse dentaire ainsi que son support de fixation au sein de la mâchoire). Nous étudierons ainsi par le biais d'une étude numérique l'influence des paramètres de conception sur le comportement de l'assemblage considéré
- …