701 research outputs found
The Mechanical Impact of the Tibetan Plateau on the Seasonal Evolution of the South Asian Monsoon
The impact of the Tibetan Plateau on the South Asian monsoon is examined using a hierarchy of atmospheric general circulation models. During the premonsoon season and monsoon onset (April–June), when westerly winds over the Southern Tibetan Plateau are still strong, the Tibetan Plateau triggers early monsoon rainfall downstream, particularly over the Bay of Bengal and South China. The downstream moist convection is accompanied by strong monsoonal low-level winds. In experiments where the Tibetan Plateau is removed, monsoon onset occurs about a month later, but the monsoon circulation becomes progressively stronger and reaches comparable strength during the mature phase. During the mature and decaying phase of monsoon (July–September), when westerly winds over the Southern Tibetan Plateau almost disappear, monsoon circulation strength is not much affected by the presence of the Tibetan Plateau.
A dry dynamical core with east–west-oriented narrow mountains in the subtropics consistently simulates downstream convergence with background zonal westerlies over the mountain. In a moist atmosphere, the mechanically driven downstream convergence is expected to be associated with significant moisture convergence. The authors speculate that the mechanically driven downstream convergence in the presence of the Tibetan Plateau is responsible for zonally asymmetric monsoon onset, particularly over the Bay of Bengal and South China
Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks
This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc
wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints.
By dual decomposition, the resource allocation problem
naturally decomposes into three subproblems: congestion control,
routing and scheduling that interact through congestion price.
The global convergence property of this algorithm is proved. We
next extend the dual algorithm to handle networks with timevarying
channels and adaptive multi-rate devices. The stability
of the resulting system is established, and its performance is
characterized with respect to an ideal reference system which
has the best feasible rate region at link layer.
We then generalize the aforementioned results to a general
model of queueing network served by a set of interdependent
parallel servers with time-varying service capabilities, which
models many design problems in communication networks. We
show that for a general convex optimization problem where a
subset of variables lie in a polytope and the rest in a convex set,
the dual-based algorithm remains stable and optimal when the
constraint set is modulated by an irreducible finite-state Markov
chain. This paper thus presents a step toward a systematic way
to carry out cross-layer design in the framework of “layering as
optimization decomposition” for time-varying channel models
Comments on "The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess" - Reply
We thank Chang and Lin for their thoughtful and
constructive comments on our study (Park et al. 2010).
In Park et al. (2010), we did not explicitly state that the
topography-forced stationary waves are the direct cause
for the reduced downstream transient eddy kinetic energy
(EKE). The response of stationary waves to topography
may saturate even with a relatively small mountain (Cook
and Held 1992); furthermore, their magnitudes are much
smaller than thermally forced stationary waves (Chang
2009; Held et al. 2002). Instead, we suggest that quasistationary waves generated by the central Asian mountains may strongly affect North Pacific storminess by
changing the year-to-year variability of westerly winds
over the eastern Eurasian continent. Observational analyses
indicate that the midwinter suppression of North
Pacific storminess does not occur every year. Some years
experience stronger and more meridionally confined
zonal winds over the western North Pacific, leading to
stronger midwinter suppression (Harnik and Chang
2004; Nakamura and Sampe 2002)
Layering as Optimization Decomposition: Questions and Answers
Network protocols in layered architectures have historically been obtained on an ad-hoc basis, and much of the recent cross-layer designs are conducted through piecemeal approaches. Network protocols may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems in the form of generalized Network Utility Maximization (NUM), providing insight on what they optimize and on the structures of network protocol stacks. In the form of 10 Questions and Answers, this paper presents a short survey of the recent efforts towards a systematic understanding of "layering" as "optimization decomposition". The overall communication network is modeled by a generalized NUM problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. Furthermore, there are many alternative decompositions, each leading to a different layering architecture. Industry adoption of this unifying framework has also started. Here we summarize the current status of horizontal decomposition into distributed computation and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and coding. We also discuss under-explored future research directions in this area. More importantly than proposing any particular crosslayer design, this framework is working towards a mathematical foundation of network architectures and the design process of modularization
Optimization Based Rate Control for Multicast with Network Coding
Recent advances in network coding have shown
great potential for efficient information multicasting in communication
networks, in terms of both network throughput and
network management. In this paper, we address the problem of
rate control at end-systems for network coding based multicast
flows. We develop two adaptive rate control algorithms for
the networks with given coding subgraphs and without given
coding subgraphs, respectively. With random network coding,
both algorithms can be implemented in a distributed manner, and
work at transport layer to adjust source rates and at network
layer to carry out network coding. We prove that the proposed
algorithms converge to the globally optimal solutions for intrasession
network coding. Some related issues are discussed, and
numerical examples are provided to complement our theoretical
analysis
Prominent Midlatitude Circulation Signature in High Asia's Surface Climate During Monsoon
©2017. American Geophysical UnionHigh Asia has experienced strong environmental changes in recent decades, as evident in records of glaciers, lakes, tree rings, and vegetation. The multiscale understanding of the climatic drivers, however, is still incomplete. In particular, few systematic assessments have evaluated to what degree, if at all, the midlatitude westerly circulation modifies local surface climates in the reach of the Indian Summer Monsoon. This paper shows that a southward shift of the upper‐tropospheric westerlies contributes significantly to climate variability in the core monsoon season (July–September) by two prominent dipole patterns at the surface: cooling in the west of High Asia contrasts with warming in the east, while moist anomalies in the east and northwest occur with drying along the southwestern margins. Circulation anomalies help to understand the dipoles and coincide with shifts in both the westerly wave train and the South Asian High, which imprint on air mass advection and local energy budgets. The relation of the variabilities to a well‐established index of midlatitude climate dynamics allows future research on climate proxies to include a fresh hypothesis for the interpretation of environmental changes
Forced and unforced decadal behavior of the interhemispheric SST contrast during the instrumental period (1881–2012):contextualizing the abrupt shift around 1970
The sea surface temperature (SST) contrast between the Northern Hemisphere (NH) and Southern Hemisphere (SH) influences the location of the intertropical convergence zone (ITCZ) and the intensity of the monsoon systems. This study examines the contributions of external forcing and unforced internal variability to the interhemispheric SST contrast in HadSST3 and ERSSTv5 observations, and 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 1881 to 2012. Using multimodel mean fingerprints, a significant influence of anthropogenic, but not natural, forcing is detected in the interhemispheric SST contrast, with the observed response larger than that of the model mean in ERSSTv5. The forced response consists of asymmetric NH–SH SST cooling from the mid-twentieth century to around 1980, followed by opposite NH–SH SST warming. The remaining best-estimate residual or unforced component is marked by NH–SH SST maxima in the 1930s and mid-1960s, and a rapid NH–SH SST decrease around 1970. Examination of decadal shifts in the observed interhemispheric SST contrast highlights the shift around 1970 as the most prominent from 1881 to 2012. Both NH and SH SST variability contributed to the shift, which appears not to be attributable to external forcings. Most models examined fail to capture such large-magnitude shifts in their control simulations, although some models with high interhemispheric SST variability are able to produce them. Large-magnitude shifts produced by the control simulations feature disparate spatial SST patterns, some of which are consistent with changes typically associated with the Atlantic meridional overturning circulation (AMOC)
Abrupt change in tropical Pacific climate mean state during the Little Ice Age
The mean state of the tropical Pacific ocean-atmosphere climate, in particular its east-west asymmetry, has profound consequences for regional climates and for the El Niño/Southern Oscillation variability. Here we present a new high-resolution paleohydrological record using the stable-hydrogen-isotopic composition of terrestrial-lipid biomarkers (δDwax) from a 1,400-year-old lake sedimentary sequence from northern Philippines. Results show a dramatic and abrupt increase in δDwax values around 1630 AD with sustained high values until around 1900 AD. We interpret this change as a shift to significantly drier conditions in the western tropical Pacific during the second half of the Little Ice Age as a result of a change in tropical Pacific mean state tied to zonal sea surface temperature (SST) gradients. Our findings highlight the prominent role of abrupt shifts in zonal SST gradients on multidecadal to multicentennial timescales in shaping the tropical Pacific hydrology of the last millennium, and demonstrate that a marked transition in the tropical Pacific mean state can occur within a period of a few decades.publishedVersio
- …