2 research outputs found
Biaxially Extended Conjugated Polymers with Thieno[3,2‑<i>b</i>]thiophene Building Block for High Performance Field-Effect Transistor Applications
Biaxially
thiophene side chain extended thienoÂ[3,2-<i>b</i>]Âthiophene
(TT2T)-based polymers, PTTT2T, P2TTT2T, PTTTT2T, and PTVTTT2T, were
synthesized by Stille coupling polymerization with different conjugated
moieties of thiophene (T), bithiophene (2T), thienoÂ[3,2-<i>b</i>]Âthiophene (TT), and thiophene–vinylene–thiophene (TVT),
respectively. The electronic properties of the prepared polymers could
be effectively tuned because the variant π-conjugated building
block affected the backbone conformation and the resulted morphology.
The morphology of the thin films characterized by atomic force microscopy
and grazing incidence X-ray diffraction showed that P2TTT2T and PTVTTT2T
thin films possessed a better molecular packing with a nanofiber structure
owing to their coplanar backbone. The average field-effect mobilities
of PTTT2T, P2TTT2T, PTTTT2T, and PTVTTT2T were 6.7 × 10<sup>–6</sup>, 0.36, 2.2 × 10<sup>–3</sup>, and 0.64 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> (maximum 0.71), respectively,
attributed to the coplanarity of polymer skeleton. In addition, the
fabricated FET devices showed a high on/off ratio over 10<sup>7</sup> under ambient for over 3 months, suggesting the excellent environmental
stability. The above results demonstrated that the biaxially extended
fused thiophene based conjugated polymers could serve as a potential
candidate for organic electronic device applications
Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors
Isoindigo-based conjugated polymers,
PII2T-C6 and PII2T-C8, with carbosilane side chains have been designed
and synthesized for stretchable electronic applications. The carbosilane
side chains offerred a simple synthetic pathway to evaluate long and
branched side chains in high yields and were prepared with a six or
eight linear spacer plus two hexyl or octyl chains after branching.
The studied polymers showed a high charge carrier mobility of 8.06
cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> with an
on/off current ratio of 10<sup>6</sup> as probed using a top-contact
transistor device with organized solid state molecular packing structures,
as investigated through grazing-incidance X-ray diffreaction (GIXD)
and atomic force microscopy (AFM) technique systematically. The studied
polymers, more attractive, exhibited superior thin film ductility
with a low tensile modulus in a range of 0.27–0.43 GPa owing
to the branched carbosilane side chain, and their mobility was remained
higher than 1 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> even under a 60% strain along parallel or perpendicular direction
to the tensile strain. Such polymer films, in addition, can be simultaneously
operated over 400 stretching/releasing cycles and maintained stable
electrical properties, suggesting the newly designed materials possessed
great potential for next-generation skin-inspired wearable electronic
application with high charge carrier mobility, low tensile modulus,
and stable device characteristics during stretching