302,341 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Property (T)(T) and strong Property (T)(T) for unital C∗C^*-algebras

    Get PDF
    In this paper, we will give a thorough study of the notion of Property (T)(T) for C∗C^*-algebras (as introduced by M.B. Bekka in \cite{Bek-T}) as well as a slight stronger version of it, called "strong property (T)(T)" (which is also an analogue of the corresponding concept in the case of discrete groups and type II1\rm II_1-factors). More precisely, we will give some interesting equivalent formulations as well as some permanence properties for both property (T)(T) and strong property (T)(T). We will also relate them to certain (T)(T)-type properties of the unitary group of the underlying C∗C^*-algebra

    From the Fourth Color to Spin-charge Separation - Neutrinos and Spinons

    Full text link
    We introduce the spin-charge separation mechanism to the quark-lepton unification models which consider the lepton number as the fourth color. In certain finite-density systems, quarks and leptons are decomposed into spinons and chargons, which carry the spin and charge degrees of freedom respectively. Neutrinos can be related to the spinons with respect to the electric-charge and spin separation in the early universe or other circumstances. Some effective, probably universal couplings between the spinon sector and the chargon sector are derived and a phenomenological description for the chargon condensate is proposed. It is then demonstrated that the spinon current can induce vorticity in the chargon condensate, and spinon zero modes are trapped in the vortices, forming spinon-vortex bound states. In cosmology this configuration may lead to the emission of extremely high energy neutrinos when vortices split and reconnect.Comment: 8 pages, 1 figure. Talk given on Feb 10, 2015, International Conference on Massive Neutrinos, Singapor

    False discovery rate control with multivariate pp-values

    Full text link
    Multivariate statistics are often available as well as necessary in hypothesis tests. We study how to use such statistics to control not only false discovery rate (FDR) but also positive FDR (pFDR) with good power. We show that FDR can be controlled through nested regions of multivariate pp-values of test statistics. If the distributions of the test statistics are known, then the regions can be constructed explicitly to achieve FDR control with maximum power among procedures satisfying certain conditions. On the other hand, our focus is where the distributions are only partially known. Under certain conditions, a type of nested regions are proposed and shown to attain (p)FDR control with asymptotically maximum power as the pFDR control level approaches its attainable limit. The procedure based on the nested regions is compared with those based on other nested regions that are easier to construct as well as those based on more straightforward combinations of the test statistics.Comment: Published in at http://dx.doi.org/10.1214/07-EJS147 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore