2,627 research outputs found
Testing Endogenous Growth in South Korea and Taiwan
We evaluate the endogenous growth hypothesis using sectoral data for South Korea and Taiwan. Our empirical work relies on a direct measure of the variety of products from each sector which can serve as intermediate inputs or as final goods. We test whether changes in the variety of these inputs, for Taiwan relative to Korea, are correlated with the growth in total factor productivity (TFP) in each sector, again measured in Taiwan relative to Korea. We find that changes in relative product variety (entered as either a lag or a lead) have a positive and significant effect on TFP in eight of the sixteen sectors. Seven out of these eight sectors are what we classify as secondary industries, in that they rely on differentiated manufactured inputs, and therefore seem to fit the idea of endogenous growth. Among the primary industries that rely more heavily on natural resources, we find more mixed evidence.
A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution
We discuss excess noise contributions of a practical balanced homodyne
detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution
(QKD). We point out the key generated from the original realistic model of GMCS
QKD may not be secure. In our refined realistic model, we take into account
excess noise due to the finite bandwidth of the homodyne detector and the
fluctuation of the local oscillator. A high speed balanced homodyne detector
suitable for GMCS QKD in the telecommunication wavelength region is built and
experimentally tested. The 3dB bandwidth of the balanced homodyne detector is
found to be 104MHz and its electronic noise level is 13dB below the shot noise
at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate
of a GMCS QKD experiment with this homodyne detector is expected to reach
Mbits/s over a few kilometers.Comment: 22 pages, 11 figure
57Fe Mossbauer spectroscopy and magnetic measurements of oxygen deficient LaFeAsO
We report on the magnetic behavior of oxygen deficient LaFeAsO1-x (x-0.10)
compound, prepared by one-step synthesis, which crystallizes in the tetragonal
(S.G. P4/nmm) structure at room temperature. Resistivity measurements show a
strong anomaly near 150 K, which is ascribed to the spin density wave (SDW)
instability. On the other hand, dc magnetization data shows paramagnetic-like
features down to 5 K, with an effective moment of 0.83 mB/Fe. 57Fe Mossbauer
studies (MS) have been performed at 95 and 200 K. The spectra at both
temperatures are composed of two sub-spectra. At 200 K the major one (88%), is
almost a singlet, and corresponds to those Fe nuclei, which have two oxygen
ions in their close vicinity. The minor one, with a large quadrupole splitting,
corresponds to Fe nuclei, which have vacancies in their immediate neighborhood.
The spectrum at 95 K, exhibits a broadened magnetic split major (84%)
sub-spectrum and a very small magnetic splitting in the minor subspectrum. The
relative intensities of the subspectra facilitate in estimating the actual
amount of oxygen vacancies in the compound to be 7.0(5)%, instead of the
nominal LaFeAsO0.90. These results, when compared with reported 57Fe MS of
non-superconducting LaFeAsO and superconducting LaFeAsO0.9F0.1, confirm that
the studied LaFeAsO0.93 is a superconductivity-magnetism crossover compound of
the newly discovered Fe based superconducting family.Comment: 7 pages text + Figs : Comments/suggestions welcome
([email protected]
Feasibility of quantum key distribution through dense wavelength division multiplexing network
In this paper, we study the feasibility of conducting quantum key
distribution (QKD) together with classical communication through the same
optical fiber by employing dense-wavelength-division-multiplexing (DWDM)
technology at telecom wavelength. The impact of the classical channels to the
quantum channel has been investigated for both QKD based on single photon
detection and QKD based on homodyne detection. Our studies show that the latter
can tolerate a much higher level of contamination from the classical channels
than the former. This is because the local oscillator used in the homodyne
detector acts as a "mode selector" which can suppress noise photons
effectively. We have performed simulations based on both the decoy BB84 QKD
protocol and the Gaussian modulated coherent state (GMCS) QKD protocol. While
the former cannot tolerate even one classical channel (with a power of 0dBm),
the latter can be multiplexed with 38 classical channels (0dBm power each
channel) and still has a secure distance around 10km. Preliminary experiment
has been conducted based on a 100MHz bandwidth homodyne detector.Comment: 18 pages, 5 figure
An Algorithm for Preferential Selection of Spectroscopic Targets in LEGUE
We describe a general target selection algorithm that is applicable to any
survey in which the number of available candidates is much larger than the
number of objects to be observed. This routine aims to achieve a balance
between a smoothly-varying, well-understood selection function and the desire
to preferentially select certain types of targets. Some target-selection
examples are shown that illustrate different possibilities of emphasis
functions. Although it is generally applicable, the algorithm was developed
specifically for the LAMOST Experiment for Galactic Understanding and
Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou
Jing Telescope. In particular, this algorithm was designed for the portion of
LEGUE targeting the Galactic halo, in which we attempt to balance a variety of
science goals that require stars at fainter magnitudes than can be completely
sampled by LAMOST. This algorithm has been implemented for the halo portion of
the LAMOST pilot survey, which began in October 2011.Comment: 17 pages, 7 figures, accepted for publication in RA
- …