1,865 research outputs found

    QCD Flux Tubes and Anomaly Inflow

    Full text link
    We apply the Callan-Harvey anomaly inflow mechanism to the study of QCD (chromoelectric) flux tubes, quark (pair)-creation and chiral magnetic effect, using new variables from the Cho-Faddeev-Niemi decomposition of the gauge potential. A phenomenological description of chromoelectric flux tubes is obtained by studying a gauged Nambu-Jona-Lasinio effective Lagrangian, derived from the original QCD Lagrangian. At the quantum level, quark condensates in the QCD vacuum may form a vortex-like structure in a chromoelectric flux tube. Quark zero modes trapped in the vortex are chiral and lead to a two-dimensional gauge anomaly. To cancel it an effective Chern-Simons coupling is needed and hence a topological charge density term naturally appears.Comment: A few clarifications; Section 5 improved on chiral magnetic effect; references added; to appear in Phys. Rev.

    Anomaly Inflow and Membranes in QCD Vacuum

    Full text link
    We study the membrane-like structure of topological charge density and its fluctuations in the QCD vacuum. Quark zero modes are localized on the membranes and the resultant gauge anomaly is cancelled by the gauge variation of a Chern-Simons type effective action in the bulk via the anomaly inflow mechanism. The coupling between brane fluctuations, described by the rotations of its normal vector, and the Chern-Simons current provides the needed anomaly inflow to the membrane. This coupling is also related to the axial U(1) anomaly which can induce brane punctures, and consequently quark-antiquark annihilation across the brane. As the Chern-Simons current has a long-range character, together with membranes it might lead to a solution to the confinement problem.Comment: 8 pages, no figure, Xth Conference on Quark Confinement and the Hadron Spectru

    Towards High-quality Visualization of Superfluid Vortices

    Full text link
    Superfluidity is a special state of matter exhibiting macroscopic quantum phenomena and acting like a fluid with zero viscosity. In such a state, superfluid vortices exist as phase singularities of the model equation with unique distributions. This paper presents novel techniques to aid the visual understanding of superfluid vortices based on the state-of-the-art non-linear Klein-Gordon equation, which evolves a complex scalar field, giving rise to special vortex lattice/ring structures with dynamic vortex formation, reconnection, and Kelvin waves, etc. By formulating a numerical model with theoretical physicists in superfluid research, we obtain high-quality superfluid flow data sets without noise-like waves, suitable for vortex visualization. By further exploring superfluid vortex properties, we develop a new vortex identification and visualization method: a novel mechanism with velocity circulation to overcome phase singularity and an orthogonal-plane strategy to avoid ambiguity. Hence, our visualizations can help reveal various superfluid vortex structures and enable domain experts for related visual analysis, such as the steady vortex lattice/ring structures, dynamic vortex string interactions with reconnections and energy radiations, where the famous Kelvin waves and decaying vortex tangle were clearly observed. These visualizations have assisted physicists to verify the superfluid model, and further explore its dynamic behavior more intuitively.Comment: 14 pages, 15 figures, accepted by IEEE Transactions on Visualization and Computer Graphic
    • …
    corecore