4,439 research outputs found
Casimir effect across a layered medium
Using nonstandard recursion relations for Fresnel coefficients involving
successive stacks of layers, we extend the Lifshitz formula to configurations
with an inhomogeneous, n-layered, medium separating two planar objects. The
force on each object is the sum of a Lifshitz like force and a force arising
from the inhomogeneity of the medium. The theory correctly reproduces very
recently obtained results for the Casimir force/energy in some simple systems
of this kind. As a by product, we obtain a formula for the force on an
(unspecified) stack of layers between two planar objects which generalizes our
previous result for the force on a slab in a planar cavity.Comment: 5 pages, 1 figure, presented at QFEXT1
Dyadic Green's Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene
An exact solution is obtained for the electromagnetic field due to an
electric current in the presence of a surface conductivity model of graphene.
The graphene is represented by an infinitesimally-thin, local and isotropic
two-sided conductivity surface. The field is obtained in terms of dyadic
Green's functions represented as Sommerfeld integrals. The solution of
plane-wave reflection and transmission is presented, and surface wave
propagation along graphene is studied via the poles of the Sommerfeld
integrals. For isolated graphene characterized by complex surface conductivity,
a proper transverse-electric (TE) surface wave exists if and only if the
imaginary part of conductivity is positive (associated with interband
conductivity), and a proper transverse-magnetic (TM) surface wave exists when
the imaginary part of conductivity is negative (associated with intraband
conductivity). By tuning the chemical potential at infrared frequencies, the
sign of the imaginary part of conductivity can be varied, allowing for some
control over surface wave properties.Comment: 9 figure
A Quantum Space Behind Simple Quantum Mechanics
In physics, experiments ultimately inform us as to what constitutes a good
theoretical model of any physical concept: physical space should be no
exception. The best picture of physical space in Newtonian physics is given by
the configuration space of a free particle (or the center of mass of a closed
system of particles). This configuration space (as well as phase space), can be
constructed as a representation space for the relativity symmetry. From the
corresponding quantum symmetry, we illustrate the construction of a quantum
configuration space, similar to that of quantum phase space, and recover the
classical picture as an approximation through a contraction of the (relativity)
symmetry and its representations. The quantum Hilbert space reduces into a sum
of one-dimensional representations for the observable algebra, with the only
admissible states given by coherent states and position eigenstates for the
phase and configuration space pictures, respectively. This analysis, founded
firmly on known physics, provides a quantum picture of physical space beyond
that of a finite-dimensional manifold, and provides a crucial first link for
any theoretical model of quantum spacetime at levels beyond simple quantum
mechanics. It also suggests looking at quantum physics from a different
perspective.Comment: 19 page
Recursion relations for generalized Fresnel coefficients: Casimir force in a planar cavity
We emphasize and demonstrate that, besides using the usual recursion
relations involving successive layers, generalized Fresnel coefficients of a
multilayer can equivalently be calculated using the recursion relations
involving stacks of layers, as introduced some time ago [M. S. Tomas, Phys.
Rev. A 51, 2545 (1995)]. Moreover, since the definition of the generalized
Fresnel coefficients employed does not imply properties of the stacks, these
nonstandard recursion relations can be used to calculate Fresnel coefficients
not only for local systems but also for a general multilayer consisting of
various types (local, nonlocal, inhomogeneous etc.) of layers. Their utility is
illustrated by deriving a few simple algorithms for calculating the
reflectivity of a Bragg mirror and extending the formula for the Casimir force
in a planar cavity to arbitrary media.Comment: 5 pages, 2 figures, slightly expande
Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves
We propose a generalization of the two-dimensional eikonal-limit cloak
derived from a conformal transformation to three dimensions. The proposed cloak
is a spherical shell composed of only isotropic media; it operates in the
transmission mode and requires no mirror or ground plane. Unlike the well-known
omnidirectional spherical cloaks, it may reduce visibility of an arbitrary
object only for a very limited range of observation angles. In the
short-wavelength limit, this cloaking structure restores not only the
trajectories of incident rays, but also their phase, which is a necessary
ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse
vector-wave (electromagnetic) versions are presented.Comment: 17 pages, 12 figure
Dissipation in intercluster plasma
We discuss dissipative processes in strongly gyrotropic, nearly collisionless
plasma in clusters of galaxies (ICM). First, we point out that Braginsky
theory, which assumes that collisions are more frequent that the system's
dynamical time scale, is inapplicable to fast, sub-viscous ICM motion. Most
importantly, the electron contribution to collisional magneto-viscosity
dominates over that of ions for short-scale Alfvenic motions. Thus, if a
turbulent cascade develops in the ICM and propagates down to scales
kpc, it is damped collisionally not on ions, but on electrons. Second, in high
beta plasma of ICM, small variations of the magnetic field strength, of
relative value , lead to development of anisotropic pressure
instabilities (firehose, mirror and cyclotron). Unstable wave modes may provide
additional resonant scattering of particles, effectively keeping the plasma in
a state of marginal stability. We show that in this case the dissipation rate
of a laminar, subsonic, incompressible flows scales as inverse of plasma beta
parameter. We discuss application to the problem of ICM heating.Comment: 4 pages, accepted by ApJ Let
Grating-coupled excitation of multiple surface plasmon-polariton waves
The excitation of multiple surface-plasmon-polariton (SPP) waves of different
linear polarization states and phase speeds by a surface-relief grating formed
by a metal and a rugate filter, both of finite thickness, was studied
theoretically, using rigorous coupled-wave-analysis. The incident plane wave
can be either p or s polarized. The excitation of SPP waves is indicated by the
presence of those peaks in the plots of absorbance vs. the incidence angle that
are independent of the thickness of the rugate filter. The absorbance peaks
representing the excitation of s-polarized SPP waves are narrower than those
representing p-polarized SPP waves. Two incident plane waves propagating in
different directions may excite the same SPP wave. A line source could excite
several SPP waves simultaneously
- …
