4,087 research outputs found
A Preliminary Look at the Physics Reach of a Solar Neutrino TPC: Time-Independent Two Neutrino Oscillations
This paper will discuss the physics reach of a solar neutrino TPC containing
many tons of He4 under high pressure. Particular attention is given to the LMA
and SMA solutions, which are allowed by current data, and which are
characterized by a lack of time-dependent phenomena (either summer-winter or
day-night asymmetries). In this case, the physics of neutrino masses and mixing
is all contained in the energy dependence of the electron neutrino survival
probability, (or in its reciprocal, the electron neutrino disappearance
probability).Comment: 19 pages, 12 figure
Recommended from our members
Time-integrated charge asymmetries at D0
We have measured the time-integrated charge asymmetries in dimuon events and semileptonic B{sub s} decays. These results are the most precise semileptonic charge asymmetries in B decays to date. We combine these results with measurements from the decay B{sub s} {yields} J/{psi}{phi} to determine the CP-violating phase {phi}{sub s}. They find {phi}{sub s} = -0.56{sub -0.41}{sup +0.44}
Optimal Circumferential Placement of Cylindrical Thermocouple Probes for Reduction of Excitation Forces
Improved KL->pi e nu Form Factor and Phase Space Integral with Reduced Model Uncertainty
Using the published KTeV sample of 2 million KL-> pi e nu decays and a new
form factor expansion with a rigorous bound on higher order terms, we present a
new determination of the KL->pi e nu form factor and phase space integral.
Compared to the previous KTeV result, the uncertainty in the new form factor
expansion is negligible and results in an overall uncertainty in the phase
space integral (IKe) that is a factor of two smaller: IKe = 0.15392 +- 0.00048
\.Comment: 3 pages, 2 figures, submitted to PRD Rapid Communicatio
Measurements of the Decay
The E799-II (KTeV) experiment at Fermilab has collected 83262 events above a background of 79 events. We measure a decay width,
normalized to the (\pi^0 \to \gamma\gamma, \pi^0 to
\gamma\gamma, \pi^0_D \to e^+e^-\gamma) decay width, of K_L \to
e^+e^-\gamma. We also measure parameters of two form factor models. In the Bergstrom, Masso, and Singer
(BMS) parametrization, we find \caks = -0.517 \pm 0.030_{stat} \pm
0.022_{syst}. We separately fit for the first parameter of the D'Ambrosio,
Isidori, and Portoles (DIP) model and find \adip = -1.729 \pm 0.043_{stat} \pm
0.028_{syst}.Comment: 5 pages, 3 figures, submitted to PR
Dynamic critical behavior of the worm algorithm for the Ising model
We study the dynamic critical behavior of the worm algorithm for the two- and three-dimensional Ising models, by Monte Carlo simulation. The autocorrelation functions exhibit an unusual three-time-scale behavior. As a practical matter, the worm algorithm is slightly more efficient than Swendsen-Wang for simulating the two-point function of the three-dimensional Ising model
Recommended from our members
Search for the Higgs boson decays H -> ee and H -> eμ in pp collisions at root s=13 TeV with the ATLAS detector
Searches for the Higgs boson decays H -> ee and H -> e mu are performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in pp collisions at root s = 13 TeV at the LHC. No significant signals are observed, in agreement with the Standard Model expectation. For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching fraction B(H -> ee) is 3.6 x 10(-4) (3.5 x 10(-4)) and on B(H -> e mu) is 6.2 x 10(-5) (5.9 x 10(-5)). These results represent improvements by factors of about five and six on the previous best limits on B(H -> ee) and B(H -> e mu) respectively. (C) 2019 The Author. Published by Elsevier B.V.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Determination of the Parity of the Neutral Pion via the Four-Electron Decay
We present a new determination of the parity of the neutral pion via the
double Dalitz decay pi^0 -> e+ e- e+ e-. Our sample, which consists of 30511
candidate decays, was collected from K_L -> pi0 pi0 pi0 decays in flight at the
KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the
negative pi^0 parity, and place a limit on scalar contributions to the pi^0 ->
e+ e- e+ e- decay amplitude of less than 3.3% assuming CPT conservation. The
pi^0 gamma* gamma* form factor is well described by a momentum-dependent model
with a slope parameter fit to the final state phase space distribution.
Additionally, we have measured the branching ratio of this mode to be B(pi^0 ->
e+ e- e+ e-) = (3.26 +- 0.18) x 10^(-5).Comment: 5 pages, 4 figures. Typographical error in radiative branching ratio
(Eq. 6) correcte
- …