4 research outputs found

    Structured Knowledge Discovery from Massive Text Corpus

    No full text
    Nowadays, with the booming development of the Internet, people benefit from its convenience due to its open and sharing nature. A large volume of natural language texts is being generated by users in various forms, such as search queries, documents, and social media posts. As the unstructured text corpus is usually noisy and messy, it becomes imperative to correctly identify and accurately annotate structured information in order to obtain meaningful insights or better understand unstructured texts. On the other hand, the existing structured information, which embodies our knowledge such as entity or concept relations, often suffers from incompleteness or quality-related issues. Given a gigantic collection of texts which offers rich semantic information, it is also important to harness the massiveness of the unannotated text corpus to expand and refine existing structured knowledge with fewer annotation efforts. In this dissertation, I will introduce principles, models, and algorithms for effective structured knowledge discovery from the massive text corpus. We are generally interested in obtaining insights and better understanding unstructured texts with the help of structured annotations or by structure-aware modeling. Also, given the existing structured knowledge, we are interested in expanding its scale and improving its quality harnessing the massiveness of the text corpus. In particular, four problems are studied in this dissertation: Structured Intent Detection for Natural Language Understanding, Structure-aware Natural Language Modeling, Generative Structured Knowledge Expansion, and Synonym Refinement on Structured Knowledg

    Development of a Coke Oven Gas Assisted Coal to Ethylene Glycol Process for High Techno-Economic Performance and Low Emission

    No full text
    Developing a coal to ethylene glycol (CtEG) process is of great interest to many countries, especially China. However, because the hydrogen to carbon ratio of the coal-gasified gas is far less than the desired value, the CtEG process suffers from high CO<sub>2</sub> emission and wastes precious carbon resources. At the same, most coke oven gas (COG) is discharged directly or used as fuel, resulting in a waste of resources, serious environmental pollution, and economic loss. To develop efficient and clean utilization of coal and COG resources, we propose a novel coke oven gas assisted coal to ethylene glycol (CaCtEG) process. The proposed process introduces the hydrogen-rich COG to adjust the hydrogen to carbon ratio and reduce CO<sub>2</sub> emission by integrating a dry methane reforming unit. Key operational parameters are investigated and optimized based on the established mathematical model. The advantages of the process are studied by a detailed techno-economic analysis. Results show that, compared with the conventional CtEG process, the CaCtEG process is promising since it increases the carbon element and exergy efficiency by 18.35% and 10.59%. The CO<sub>2</sub> emission ratio of the proposed process is reduced from 2.58 t/t-EG to 0.44 t/t-EG. From an economic point of view, the CaCtEG process can save production costs by 5.11% and increase the internal rate of return by 3.41%. The capital investment, however, is slightly increased because of the two additional units

    On the Origin of d<sup>0</sup> Magnetism in Transparent Metal Oxide Nanocrystals

    No full text
    Controlling magnetic and magneto-optical properties of transparent metal oxide semiconductors has a significant potential for spintronics and photonics. Although ferromagnetism has been reported for several nanostructured transparent metal oxides in the absence of magnetic dopants, its origin and the nature of the exchange interactions remain controversial. Here, we report a variable-temperature–variable-field magnetic circular dichroism study of ZnO and SnO2 nanocrystals prepared under oxidizing and reducing conditions. We observe the band splitting in ZnO and SnO2 nanocrystals induced by localized doublet (S = 1/2) and triplet (S = 1) ground states, respectively. Photoluminescence measurements suggest that these states are associated with oxygen vacancies, either as isolated paramagnetic sites in ZnO or as local vacancy-based complexes in SnO2 nanocrystals. The results of this work demonstrate the ability to tune carrier polarization in metal oxide nanocrystals by in situ control of the native defect formation and attest to the anomalous Zeeman splitting of the band states, which may play an important role in generating ferromagnetism in this class of materials

    Revisiting Plasmonic Properties of Complex Semiconductor Nanocrystals Using Magnetic Circular Dichroism Spectroscopy: A Cautionary Tale

    No full text
    Plasmonic semiconductor nanocrystals (NCs) have emerged as an attractive alternative to noble metal nanoparticles. They typically exhibit localized surface plasmon resonance (LSPR) in the infrared range, which can be tuned by controlling the type and concentration of charge carriers. Compositionally and electronically complex semiconductor NCs have attracted significant attention due to their reported plasmonic properties, such as bipolar behavior (off-stoichiometric spinel-type gallium iron oxide or GFO), wide tunability (copper iron chalcogenide or CuxFeyS2–zSez), and extremely broad LSPR (oxygen-deficient WO3–x). However, the origin of these unusual properties remains unclear. Here, we comparatively investigate the plasmonic properties of these semiconductor NC materials using magnetic circular dichroism (MCD) spectroscopy, owing to the highly specific response of LSPR to the magnetic field and light polarization. In all systems, we find indisputable evidence that the LSPR absorption bands have been mischaracterized. MCD signals that coincide with the absorption bands previously assigned to LSPR of GFO and CuxFeyS2–zSez NCs show rapid saturation with the magnetic field and independence on the sign of charge carriers, indicating that the corresponding absorption bands are not due to LSPR. This behavior is consistent with intra-ionic and inter-band transitions for GFO and CuxFeyS2–zSez NCs, respectively. The MCD signal corresponding to the absorption spectrum of WO3–x NCs shows Brillouin function dependence on the magnetic field at high photon energies (attributed to d–d transitions of W5+) and linear dependence in the near-infrared range (attributed to LSPR), indicating that the broad absorption spectrum of WO3–x NCs is only partly associated with LSPR. The results of this work help resolve notable discrepancies in the literature, underline the challenges in assigning absorption bands of complex semiconductor NCs to LSPR, and demonstrate that MCD spectroscopy is an invaluable tool for characterization of these materials
    corecore