10,669 research outputs found
Controlling complex networks: How much energy is needed?
The outstanding problem of controlling complex networks is relevant to many
areas of science and engineering, and has the potential to generate
technological breakthroughs as well. We address the physically important issue
of the energy required for achieving control by deriving and validating scaling
laws for the lower and upper energy bounds. These bounds represent a reasonable
estimate of the energy cost associated with control, and provide a step forward
from the current research on controllability toward ultimate control of complex
networked dynamical systems.Comment: 4 pages paper + 5 pages supplement. accepted for publication in
Physical Review Letters;
http://link.aps.org/doi/10.1103/PhysRevLett.108.21870
Relativistic theory of inverse beta-decay of polarized neutron in strong magnetic field
The relativistic theory of the inverse beta-decay of polarized neutron, , in strong magnetic field is developed. For the proton
wave function we use the exact solution of the Dirac equation in the magnetic
filed that enables us to account exactly for effects of the proton momentum
quantization in the magnetic field and also for the proton recoil motion. The
effect of nucleons anomalous magnetic moments in strong magnetic fields is also
discussed. We examine the cross section for different energies and directions
of propagation of the initial neutrino accounting for neutrons polarization. It
is shown that in the super-strong magnetic field the totally polarized neutron
matter is transparent for neutrinos propagating antiparallel to the direction
of polarization. The developed relativistic approach can be used for
calculations of cross sections of the other URCA processes in strong magnetic
fields.Comment: 41 pages in LaTex including 11 figures in PostScript, discussion on
nucleons AMM interaction with magnetic field is adde
Long-term culture captures injury-repair cycles of colonic stem cells
The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hop
Pair production of the T-odd leptons at the LHC
The T-odd leptons predicted by the littlest model with T-parity can
be pair produced via the subprocesses ,
, and (= or
) at the Large Hadron Collider . We estimate the hadronic
production cross sections for all of these processes and give a simply
phenomenology analysis. We find that the cross sections for most of the above
processes are very small. However, the value of the cross section for the
process can reach .Comment: 12 pages, 2 figure
Drifting subpulses and inner acceleration regions in radio pulsars
The classical vacuum gap model of Ruderman & Sutherland, in which
spark-associated subbeams of subpulse emission circulate around the magnetic
axis due to the EB drift, provides a natural and plausible physical mechanism
of the subpulse drift phenomenon. Recent progress in the analysis of drifting
subpulses in pulsars has provided a strong support to this model by revealing a
number of subbeams circulating around the magnetic axis in a manner compatible
with theoretical predictions. However, a more detailed analysis revealed that
the circulation speed in a pure vacuum gap is too high when compared with
observations. Moreover, some pulsars demonstrate significant time variations of
the drift rate, including a change of the apparent drift direction, which is
obviously inconsistent with the EB drift scenario in a pure vacuum gap. We
resolved these discrepancies by considering a partial flow of iron ions from
the positively charged polar cap, coexisting with the production of outflowing
electron-positron plasmas. By fitting the observationally deduced drift-rates
to the theoretical values, we managed to estimate polar cap surface
temperatures in a number of pulsars. The estimated surface temperatures
correspond to a small charge depletion of the order of a few percent of the
corotational charge density. We also argue that if the thermionic electron
outflow from the surface of a negatively charged polar cap is slightly below
the Goldreich-Julian density, then the resulting small charge depletion will
have similar consequences as in the case of the ions outflow. We thus believe
that the sparking discharge of a partially shielded acceleration potential drop
occurs in all pulsars, with both positively (``pulsars'') and negatively
(``anti-pulsars'') charged polar caps
Residential Assessment Instrument 2.0 in care planning for residents in nursing homes
published_or_final_versio
Cascade-based attacks on complex networks
We live in a modern world supported by large, complex networks. Examples
range from financial markets to communication and transportation systems. In
many realistic situations the flow of physical quantities in the network, as
characterized by the loads on nodes, is important. We show that for such
networks where loads can redistribute among the nodes, intentional attacks can
lead to a cascade of overload failures, which can in turn cause the entire or a
substantial part of the network to collapse. This is relevant for real-world
networks that possess a highly heterogeneous distribution of loads, such as the
Internet and power grids. We demonstrate that the heterogeneity of these
networks makes them particularly vulnerable to attacks in that a large-scale
cascade may be triggered by disabling a single key node. This brings obvious
concerns on the security of such systems.Comment: 4 pages, 4 figures, Revte
- …
