13,395 research outputs found
Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data
It is well known that recognizers personalized to each user are much more
effective than user-independent recognizers. With the popularity of smartphones
today, although it is not difficult to collect a large set of audio data for
each user, it is difficult to transcribe it. However, it is now possible to
automatically discover acoustic tokens from unlabeled personal data in an
unsupervised way. We therefore propose a multi-task deep learning framework
called a phoneme-token deep neural network (PTDNN), jointly trained from
unsupervised acoustic tokens discovered from unlabeled data and very limited
transcribed data for personalized acoustic modeling. We term this scenario
"weakly supervised". The underlying intuition is that the high degree of
similarity between the HMM states of acoustic token models and phoneme models
may help them learn from each other in this multi-task learning framework.
Initial experiments performed over a personalized audio data set recorded from
Facebook posts demonstrated that very good improvements can be achieved in both
frame accuracy and word accuracy over popularly-considered baselines such as
fDLR, speaker code and lightly supervised adaptation. This approach complements
existing speaker adaptation approaches and can be used jointly with such
techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201
Search for Axion(-like) Particles in Heavy-Ion Collisions
We propose a novel way to search for axion(-like) particles in heavy-ion
collisions using prompt photons as the probe and the property of conversion
between photon and axion(-like) particles under a strong magnetic field
generated in the non-central collisions. The expected result reveals that a new
phase space region of the coupling constant for photon and axion(-like)
particles can be covered in the future high energy nuclear colliders
- …