151,637 research outputs found
Fabrication of photonic band-gap crystals
We describe the fabrication of three-dimensional photonic crystals using a reproducible and reliable procedure consisting of electron beam lithography followed by a sequence of dry etching steps. Careful fabrication has enabled us to define photonic crystals with 280 nm holes defined with 350 nm center to center spacings in GaAsP and GaAs epilayers. We construct these photonic crystals by transferring a submicron pattern of holes from 70-nm-thick polymethylmethacrylate resist layers into 300-nm-thick silicon dioxide ion etch masks, and then anisotropically angle etching the III-V semiconductor material using this mask. Here, we show the procedure used to generate photonic crystals with up to four lattice periods depth
Near infrared avalanche photodiodes with bulk Al0.04Ga0.96Sb and GaSb/AlSb superlattice gain layers
We demonstrate the use of bulk Al0.04Ga0.96Sb and GaSb/AlSb superlattice as the gain material in a separate absorption/multiplication avalanche photodiode with sensitivity up to 1.74 µm. Both gain schemes were implemented in a molecular-beam epitaxy grown structure with a selectively doped InAs/AlSb superlattice as the n-type layer. Hole impact ionization enhancement was observed in Al0.04Ga0.96Sb by using a two wavelength injection scheme. The superlattice gain layer device exhibited multiplication factors in excess of 300, and surface limited dark current at a level comparable to InGaAs/InAlAs devices of similar design. The superlattice gain layer was found to be more promising than its bulk counterpart due to its inherent lower dark current
Ballistic electron emission microscopy spectroscopy study of AlSb and InAs/AlSb superlattice barriers
Due to its large band gap, AlSb is often used as a barrier in antimonide heterostructure devices. However, its transport characteristics are not totally clear. We have employed ballistic electron emission microscopy (BEEM) to directly probe AlSb barriers as well as more complicated structures such as selectively doped n-type InAs/AlSb superlattices. The aforementioned structures were grown by molecular beam epitaxy on GaSb substrates. A 100 Ã… InAs or 50 Ã… GaSb capping layer was used to prevent surface oxidation from ex situ processing. Different substrate and capping layer combinations were explored to suppress background current and maximize transport of BEEM current. The samples were finished with a sputter deposited 100 Ã… metal layer so that the final BEEM structure was of the form of a metal/capping layer/semiconductor. Of note is that we have found that hole current contributed significantly to BEEM noise due to type II band alignment in the antimonide system. BEEM data revealed that the electron barrier height of Al/AlSb centered around 1.17 eV, which was attributed to transport through the conduction band minimum near the AlSb X point. Variation in the BEEM threshold indicated unevenness at the Al/AlSb interface. The metal on semiconductor barrier height was too low for the superlattice to allow consistent probing by BEEM spectroscopy. However, the superlattice BEEM signal was elevated above the background noise after repeated stressing of the metal surface. A BEEM threshold of 0.8 eV was observed for the Au/24 Ã… period superlattice system after the stress treatment
Strain in wet thermally oxidized square and circular mesas
In this paper, we report the observation, through optical microscopy, of drumhead-like patterns in square and circular mesas which have been wet thermally oxidized to completion. Micro-Raman spectroscopy measurements are used to show that these patterns roughly correspond to variations in strain induced in surrounding semiconductor layers by the oxidation process. In addition, the patterns have a specific orientation with respect to the crystallographic axes of the semiconductor. A crystallographic dependence of the oxidation process itself is demonstrated and used to explain the orientation of the drumhead patterns
Effect of cylindrical geometry on the wet thermal oxidation of AlAs
We have investigated the wet thermal oxidation of AlAs in cylindrical geometry, a typical configuration for vertical-cavity surface-emitting lasers. Through both experiment and theoretical calculations, we demonstrate a significantly different time dependence for circular mesas from what has been reported in the literature both in studies of stripes and in a study of circular mesas. We attribute this different time dependence to the effect of geometry on the oxidation
Copying equations to assess mathematical competence: An evaluation of pause measures using graphical protocol analysis
Can mathematical competence be measured by analyzing the patterns of pauses between written elements in the freehand copying of mathematical equations? Twenty participants of varying levels of mathematical competence copied sets of equations and sequences of numbers on a graphics tablet. The third quartile of pauses is an effective measure, because it re- flects the greater number of chunks and the longer time spent per chunk by novices as they processed the equations. To compensate for individual differences in speeds of elementary operations and skill in writing basic mathematical symbols, variants on the measure were devised and tested
- …