22,584 research outputs found
Asteroseismology of DAV white dwarf stars and G29-38
Asteroseismology is a powerful tool to detect the inner structure of stars.
It is also widely used to study white dwarfs. In this paper, we discuss the
asteroseismology work of DAV stars. The detailed period to period fitting
method is fully discussed, including the reliability to detect the inner
structure of DAV stars. If we assume that all observed modes of some DAV star
are the = 1 ones, the errors of model fitting will be always great. If we
assume that the observed modes are composed of = 1 and 2 modes, the errors
of model fitting will be small. However, there will be modes identified as
= 2 without quintuplets observed. G29-38 has been observed spectroscopically
and photometrically for many years. Thompson et al. (2008) made
identifications for the star through limb darkening effect. With eleven known
modes, we also do the asteroseismology work for G29-38, which reduces the
blind fittings and is a fair choice. Unfortunately, our two best-fitting
models are not in line with the previous atmospheric results. Based on factors
of only a few modes observed, stability and identification of eigenmodes,
identification of spherical degrees, construction of physical and realistic
models and so on, detecting the inner structure of DAV stars by
asteroseismology needs further development.Comment: 7pages, 1figur
Cloning and expression of first gene for biodegrading microcystins by Sphingopyxis sp. USTB-05
Harmful cyanobacterial blooms (HCBs) in natural waters are a growing environmental problem worldwide because microcystins (MCs) produced by cyanobacteria are potent hepatotoxins and tumor promoters. MCs are resistant against physical and chemical factors. Thus, biodegradation is the most efficient method for removing MCs, and a number of bacterial strains, especially genus _Sphingomonas_, have been isolated for biodegrading MCs. Although the pathway, enzyme, and gene for biodegrading MCs by _Sphingomonas sp._ have been widely identified recently, no gene concerned with the biodegradation of MCs has been successfully cloned and expressed. In this study, we show that the first and most important gene of mlrA, containing 1,008 bp nucleotides in length, in the biodegradation pathway of MCs by _Sphingopyxis sp._ USTB-05, which encodes an enzyme MlrA containing 336 amino acid residues, is firstly cloned and expressed in _E. coli_ DH5α, with a cloning vector of pGEM-T easy and an expression vector of pGEX-4T-1. The encoded and expressed enzyme MlrA is responsible for cleaving the target peptide bond between 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-deca-4,6-dienoic acid (Adda) and Arg in the cyclic structure of microcystin-RR (MC-RR)and microcystin-LR(MC-LR), two typical and toxic types of MCs. Linear MC-RR and MC-LR are produced as the first products. These findings are important in constructing a new genetic bacterial strain for the efficient removal of MCs from the important water supplies and resolving the controversy on the biodegradation pathway of different types of MCs by genus _Sphingomonas_
Universal impurity-induced bound state in topological superfluids
We predict a universal mid-gap bound state in topological superfluids,
induced by either non-magnetic or magnetic impurities in the strong scattering
limit. This universal state is similar to the lowest-energy Caroli-de
Gennes-Martricon bound state in a vortex core, but is bound to localized
impurities. We argue that the observation of such a universal bound state can
be a clear signature for identifying topological superfluids. We theoretically
examine our argument for a spin-orbit coupled ultracold atomic Fermi gas
trapped in a two-dimensional harmonic potential, by performing extensive
self-consistent calculations within the mean-field Bogoliubov-de Gennes theory.
A realistic scenario for observing universal bound state in ultracold K
atoms is proposed.Comment: 5 pages + 4 figures; published in PRL; see the relevant study in 1D:
Phys. Rev. A 87, 013622 (2013); see also the accompanying Physics Synopsis:
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.02040
Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal
We propose a kind of electromagnetic (EM) diode based on a two-dimensional nonreciprocal gyrotropic photonic crystal. This
periodic microstructure has separately broken symmetries in both parity
(P) and time-reversal (T) but obeys parity-time (PT) symmetry. This
kind of diode could support bulk one-way propagating modes either for
group velocity or phase velocity with various types of negative and
positive refraction. This symmetry-broken system could be a platform to
realize abnormal photoelectronic devices, and it may be analogous to an
electron counterpart with one-way features
Online Updating of Statistical Inference in the Big Data Setting
We present statistical methods for big data arising from online analytical
processing, where large amounts of data arrive in streams and require fast
analysis without storage/access to the historical data. In particular, we
develop iterative estimating algorithms and statistical inferences for linear
models and estimating equations that update as new data arrive. These
algorithms are computationally efficient, minimally storage-intensive, and
allow for possible rank deficiencies in the subset design matrices due to
rare-event covariates. Within the linear model setting, the proposed
online-updating framework leads to predictive residual tests that can be used
to assess the goodness-of-fit of the hypothesized model. We also propose a new
online-updating estimator under the estimating equation setting. Theoretical
properties of the goodness-of-fit tests and proposed estimators are examined in
detail. In simulation studies and real data applications, our estimator
compares favorably with competing approaches under the estimating equation
setting.Comment: Submitted to Technometric
- …