1,064 research outputs found

    Can LHCb Study Three Body Decays with Neutrals?

    Full text link
    We present the first attempt to use a new method to measure CP violation in Dalitz plots. This method is unbinned, model independent and has a greater sensitivity to CP violating effects than binned methods. Preliminary studies have been made using the three-body decays D0→KS0h+h−D^0 \rightarrow K_\mathrm{S}^0 h^+ h^- and D0→h+h−π0D^0 \rightarrow h^+ h^- \pi^0, which are especially challenging since there is one neutral particle in each of the final states. An attempt to visualise where CP violation occurs in Dalitz plots is also presented.Comment: to appear in the proceedings of The 6th International Workshop on Charm Physics (CHARM 2013

    Requirement analysis for dE/dx measurement and PID performance at the CEPC baseline detector

    Full text link
    The Circular Electron-Positron Collider (CEPC) can be operated not only as a Higgs factory but also as a Z-boson factory, offering great opportunities for flavor physics studies where Particle Identification (PID) is critical. The baseline detector of the CEPC could record TOF and dE/dx information that can be used to distinguish particles of different species. We quantify the physics requirements and detector performance using physics benchmark analyzes with full simulation. We conclude that at the benchmark TOF performance of 50 50\,ps, the dE/dx resolution should be better than 3% for incident particles in the barrel region with a relevant energy larger than 2 2\, GeV/c. This performance leads to an efficiency/purity of K±K^{\pm} identification 97%/96%, D0→π+K−D^0\to \pi^+K^- reconstruction 68.19%/89.05%, and ϕ→K+K−\phi\to K^+K^- reconstruction 82.26%/77.70%, providing solid support for relevant CEPC flavor physics measurements

    On model-independent searches for direct CP violation in multi-body decays

    Get PDF
    Techniques for performing model-independent searches for direct CP violation in three and four-body decays are discussed. Comments on the performance and the optimisation of a binned chisquare approach and an unbinned approach, known as the energy test, are made. The use of the energy test in the presence of background is also studied. The selection and treatment of the coordinates used to describe the phase-space of the decay are discussed. The conventional model-independent techniques, which test for P-even CP violation, are modified to create a new approach for testing for P-odd CP violation. An implementation of the energy test using GPUs is described

    Prospects for B(s)0→π0π0B^0_{(s)}\to\pi^0\pi^0 and B(s)0→ηηB^0_{(s)}\to\eta\eta modes and corresponding CPCP asymmetries at Tera-ZZ

    Full text link
    The physics potential of measuring B(s)0→π0π0B^0_{(s)}\to\pi^0\pi^0 and B(s)0→ηηB^0_{(s)}\to\eta\eta decays via four-photon final states at Tera-ZZ phase of CEPC or FCC-ee is investigated in this paper. We propose an electromagnetic calorimeter (ECAL) with both high energy resolution and excellent separation power to efficiently reconstruct π0\pi^0 and η\eta from hadronic final states with high photon multiplicity. The resulting BB-meson mass resolution is approximately 30 MeV, allowing 3 σ\sigma separation between B0B^0 and Bs0B_s^0. With the assistance of the bb-jet tagging, the relative sensitivities to B0→π0π0B^0\to\pi^0\pi^0, Bs0→π0π0B^0_s\to\pi^0\pi^0, B0→ηηB^0\to\eta\eta, and Bs0→ηηB^0_s\to\eta\eta signal strengths at Tera-ZZ are projected as 0.45%, 4.5%, 18%, and 0.95%, respectively. Their dependence on various detector performances is also discussed. In addition, B0→π0π0B^0\to\pi^0\pi^0 and its two isospin-related modes are paid special attention due to their roles in the determination of the CKM angle α\alpha (ϕ2\phi_2). The anticipated precisions of their branching-ratio and CPCP-asymmetry measurements at Tera-ZZ are evaluated. We show that the measurement of the time-integrated B0→π0π0B^0\to\pi^0\pi^0 CPCP asymmetry at Tera-ZZ is complementary to BB-factory ones. The precision on α\alpha combining ZZ- and BB-factory results reaches 0.4∘0.4^\circ, lower than the systematic uncertainties attached to isospin breaking

    Heavy Flavour Physics and CP Violation at LHCb: a Ten-Year Review

    Full text link
    Heavy flavour physics provides excellent opportunities to indirectly search for new physics at very high energy scales and to study hadron properties for deep understanding of the strong interaction. The LHCb experiment has been playing a leading role in the study of heavy flavour physics since the start of the LHC operations about ten years ago, and made a range of high-precision measurements and unexpected discoveries, which may have far-reaching implications on the field of particle physics. This review highlights a selection of the most influential physics results on CP violation, rare decays, and heavy flavour production and spectroscopy obtained by LHCb using the data collected during the first two operation periods of the LHC. The upgrade plan of LHCb and the physics prospects are also briefly discussed.Comment: Invited review for Frontiers of Physic

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → ÎŒ+Ό−)/B(Bs → ÎŒ+Ό−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    • 

    corecore