46 research outputs found
High-order rogue waves of a long wave-short wave model
The long wave-short wave model describes the interaction between the long
wave and the short wave. Exact higher-order rational solution expressed by
determinants is calculated via the Hirota's bilinear method and the KP
hierarchy reduction. It is found that the fundamental rogue wave for the short
wave can be classified into three different patterns: bright, intermediate and
dark ones, whereas the rogue wave for the long wave is always bright type. The
higher-order rogue waves correspond to the superposition of fundamental rogue
waves. The modulation instability analysis show that the condition of the
baseband modulation instability where an unstable continuous-wave background
corresponds to perturbations with infinitesimally small frequencies, coincides
with the condition for the existence of rogue-wave solutions.Comment: 14 pages, 5 figure
Non-gapless excitation and zero-bias fast oscillations in the LDOS of surface superconducting states
Recently a novel surface pair-density-wave (PDW) superconducting state has
been discovered in Refs. [Phys. Rev. Lett. \textbf{122}, 165302 (2019)] and
Phys. Rev. B \textbf{101}, 054506 (2020)], which may go through a distinct
multiple phase transition (MPT) when the superconductivity fades away from bulk
to the boundary (e.g. edges and corners). Based on the Bogoliubov-de Gennes
equations for the attractive tight-binding Hubbard modal in a one-dimensional
chain, we demonstrate that the surface PDW state has a non-gapless
quasiparticle spectrum, which is contrary to the conventional surface
superconducting state. Moreover, we find that the MPT is associated with a
zero-bias fast oscillating pattern in the LDOS near the surface. Our findings
provide a potential experimental clue to identify the surface PDW state.Comment: 4 figure
High-order rogue waves of a long-wave–short-wave model of Newell type
The long-wave–short-wave (LWSW) model of Newell type is an integrable model describing the interaction between the gravity wave (long wave) and the capillary wave (short wave) for the surface wave of deep water under certain resonance conditions. In the present paper, we are concerned with rogue-wave solutions to the LWSW model of Newell type. By combining the Hirota’s bilinear method and the KP hierarchy reduction, we construct its general rational solution expressed by the determinant. It is found that the fundamental rogue wave for the short wave can be classified into three different patterns: bright, intermediate, and dark states, whereas the one for the long wave is always a bright state. The higher-order rogue wave corresponds to the superposition of fundamental ones. The modulation instability analysis shows that the condition of the baseband modulation instability where an unstable continuous-wave background corresponds to perturbations with infinitesimally small frequencies, coincides with the condition for the existence of rogue-wave solutions
Case report: Anesthetic management for removal of tumor thrombus in the inferior vena cava and pulmonary artery in renal cell carcinoma
Anesthetic management of patients with renal cell carcinoma with tumor thrombus in the inferior vena cava (IVC) is challenging. This paper reports the experience of anesthesia management in a patient with advanced renal cell carcinoma with thrombus accumulation in the IVC, right atrium, and pulmonary artery who underwent radical nephrectomy and tumor thrombus removal assisted by cardiopulmonary bypass. The emboli, measuring approximately 3 × 6 cm in the left inferior pulmonary artery and 4 × 13 cm in the right main pulmonary artery, were removed completely. During incision of the IVC under systemic heparinization, significant blood loss occurred in the surgical field. The surgery took 724 min, and cardiopulmonary bypass took 396 min. Intraoperative blood loss was 22,000 ml. The patient was extubated 39 hours after surgery and stayed in intensive care unit for 3 days. At 1 year follow-up, the patient was in good health and leading a normal life
Overexpression of the FBA and TPI genes promotes high production of HDMF in Zygosaccharomyces rouxii
4-Hydroxy-2,5-dimethyl-3 (2H)-furanone (HDMF) is widely used in the food industry as a spice and flavoring agent with high market demand. In this study, fructose-1,6-bisphosphate aldolase (FBA) and triose phosphate isomerase (TPI) were overexpressed in Zygosaccharomyces rouxii in the form of single and double genes, respectively, via electroporation. High-yield HDMF-engineered yeast strains were constructed by combining the analysis of gene expression levels obtained by real-time fluorescence quantitative PCR technology and HDMF production measured by HPLC. The results showed that there was a significant positive correlation between the production of HDMF and the expression levels of the FBA and TPI genes in yeast; the expression levels of the FBA and TPI genes were also positively correlated (p < 0.05). Compared with the wild type (WT), the engineered strains F10-D, T17-D, and TF15-A showed marked increases in HDMF production and FBA and TPI gene expression (p < 0.05) and exhibited great genetic stability with no obvious differences in biomass or colony morphology. In addition, the exogenous addition of d-fructose promoted the growth of Z. rouxii. Among the engineered strains, when fermented in YPD media supplemented with d-fructose for 5 days, TF15-A (overexpressing the FBA and TPI genes) generated the highest HDMF production of 13.39 mg/L, which is 1.91 times greater than that of the wild-type strain. The results above indicated that FBA and TPI, which are key enzymes involved in the process of HDMF biosynthesis by Z. rouxii, positively regulate the synthesis of HDMF at the transcriptional level. d-fructose can be used as a precursor for the biosynthesis of HDMF by engineered yeast in industrial production
Nanocomposite ZnO–SnO2 Nanofibers Synthesized by Electrospinning Method
We report the characterization of mixed oxides nanocomposite nanofibers of (1 − x) ZnO-(x)SnO2 (x ≤ 0.45) synthesized by electrospinning technique. The diameter of calcined nanofibers depends on Sn content. Other phases like SnO, ZnSnO3, and Zn2SnO4 were absent. Photoluminescence studies show that there is a change in the blue/violet luminescence confirming the presence of Sn in Zn-rich composition. Present study shows that the crystalline nanocomposite nanofibers with stoichiometry of (1 − x)ZnO-(x)SnO2 (x ≤ 0.45) stabilize after the calcination and possess some morphological and optical properties that strongly depend on Sn content
Genetic Epidemiology of Glioblastoma Multiforme: Confirmatory and New Findings from Analyses of Human Leukocyte Antigen Alleles and Motifs
Human leukocyte antigen (HLA) class I genes mediate cytotoxic T-lymphocyte responses and natural killer cell function. In a previous study, several HLA-B and HLA-C alleles and haplotypes were positively or negatively associated with the occurrence and prognosis of glioblastoma multiforme (GBM).As an extension of the Upper Midwest Health Study, we have performed HLA genotyping for 149 GBM patients and 149 healthy control subjects from a non-metropolitan population consisting almost exclusively of European Americans. Conditional logistic regression models did not reproduce the association of HLA-B*07 or the B*07-Cw*07 haplotype with GBM. Nonetheless, HLA-A*32, which has previously been shown to predispose GBM patients to a favorable prognosis, was negatively associated with occurrence of GBM (odds ratio=0.41, p=0.04 by univariate analysis). Other alleles (A*29, A*30, A*31 and A*33) within the A19 serology group to which A*32 belongs showed inconsistent trends. Sequencing-based HLA-A genotyping established that A*3201 was the single A*32 allele underlying the observed association. Additional evaluation of HLA-A promoter and exon 1 sequences did not detect any unexpected single nucleotide polymorphisms that could suggest differential allelic expression. Further analyses restricted to female GBM cases and controls revealed a second association with a specific HLA-B sequence motif corresponding to Bw4-80Ile (odds ratio=2.71, p=0.02).HLA-A allelic product encoded by A*3201 is likely to be functionally important to GBM. The novel, sex-specific association will require further confirmation in other representative study populations
Organic Compounds as Corrosion Inhibitors for Carbon Steel in HCl Solution: A Comprehensive Review
Most studies on the corrosion inhibition performance of organic molecules and (nano)materials were conducted within “carbon steel/1.0 M HCl” solution system using similar experimental and theoretical methods. As such, the numerous research findings in this system are sufficient to conduct comparative studies to select the best-suited inhibitor type that generally refers to a type of inhibitor with low concentration/high inhibition efficiency, nontoxic properties, and a simple and cost-economic synthesis process. Before data collection, to help readers have a clear understanding of some crucial elements for the evaluation of corrosion inhibition performance, we introduced the mainstay of corrosion inhibitors studies involved, including the corrosion and inhibition mechanism of carbon steel/HCl solution systems, evaluation methods of corrosion inhibition efficiency, adsorption isotherm models, adsorption thermodynamic parameters QC calculations, MD/MC simulations, and the main characterization techniques used. In the classification and statistical analysis section, organic compounds or (nano)materials as corrosion inhibitors were classified into six types according to their molecular structural characteristics, molecular size, and compound source, including drug molecules, ionic liquids, surfactants, plant extracts, polymers, and polymeric nanoparticles. We outlined the important conclusions obtained from recent literature and listed the evaluation methods, characterization techniques, and contrastable experimental data of these types of inhibitors when used for carbon steel corrosion in 1.0 M HCl solution. Finally, statistical analysis was only performed based on these data from carbon steel/1.0 M HCl solution system, from which some conclusions can contribute to reducing the workload of the acquisition of useful information and provide some reference directions for the development of new corrosion inhibitors