14,868 research outputs found

    Continuous Monitoring of A/B Tests without Pain: Optional Stopping in Bayesian Testing

    Full text link
    A/B testing is one of the most successful applications of statistical theory in modern Internet age. One problem of Null Hypothesis Statistical Testing (NHST), the backbone of A/B testing methodology, is that experimenters are not allowed to continuously monitor the result and make decision in real time. Many people see this restriction as a setback against the trend in the technology toward real time data analytics. Recently, Bayesian Hypothesis Testing, which intuitively is more suitable for real time decision making, attracted growing interest as an alternative to NHST. While corrections of NHST for the continuous monitoring setting are well established in the existing literature and known in A/B testing community, the debate over the issue of whether continuous monitoring is a proper practice in Bayesian testing exists among both academic researchers and general practitioners. In this paper, we formally prove the validity of Bayesian testing with continuous monitoring when proper stopping rules are used, and illustrate the theoretical results with concrete simulation illustrations. We point out common bad practices where stopping rules are not proper and also compare our methodology to NHST corrections. General guidelines for researchers and practitioners are also provided

    Filter-And-Forward Distributed Beamforming in Relay Networks with Frequency Selective Fading

    Full text link
    A new approach to distributed cooperative beamforming in relay networks with frequency selective fading is proposed. It is assumed that all the relay nodes are equipped with finite impulse response (FIR) filters and use a filter-and-forward (FF) strategy to compensate for the transmitter-to-relay and relay-to-destination channels. Three relevant half-duplex distributed beamforming problems are considered. The first problem amounts to minimizing the total relay transmitted power subject to the destination quality-of-service (QoS) constraint. In the second and third problems, the destination QoS is maximized subject to the total and individual relay transmitted power constraints, respectively. For the first and second problems, closed-form solutions are obtained, whereas the third problem is solved using convex optimization. The latter convex optimization technique can be also directly extended to the case when the individual and total power constraints should be jointly taken into account. Simulation results demonstrate that in the frequency selective fading case, the proposed FF approach provides substantial performance improvements as compared to the commonly used amplify-and-forward (AF) relay beamforming strategy.Comment: Submitted to IEEE Trans. on Signal Processing on 8 July 200

    Spatially extended nature of resistive switching in perovskite oxide thin films

    Full text link
    We report the direct observation of the electric pulse induced resistance-change (EPIR) effect at the nano scale on La1-xSrxMnO3 (LSMO) thin films by the current measurement AFM technique. After a switching voltage of one polarity is applied across the sample by the AFM tip, the conductivity in a local nanometer region around the AFM tip is increased, and after a switching voltage of the opposite polarity is applied, the local conductivity is reduced. This reversible resistance switching effect is observed under both continuous and short pulse voltage switching conditions. It is important for future nanoscale non-volatile memory device applications.Comment: 11 pages, 3 figure

    Fixation probabilities for any configuration of two strategies on regular graphs

    Full text link
    Population structure and spatial heterogeneity are integral components of evolutionary dynamics, in general, and of evolution of cooperation, in particular. Structure can promote the emergence of cooperation in some populations and suppress it in others. Here, we provide results for weak selection to favor cooperation on regular graphs for any configuration, meaning any arrangement of cooperators and defectors. Our results extend previous work on fixation probabilities of single, randomly placed mutants. We find that for any configuration cooperation is never favored for birth-death (BD) updating. In contrast, for death-birth (DB) updating, we derive a simple, computationally tractable formula for weak selection to favor cooperation when starting from any configuration containing any number of cooperators and defectors. This formula elucidates two important features: (i) the takeover of cooperation can be enhanced by the strategic placement of cooperators and (ii) adding more cooperators to a configuration can sometimes suppress the evolution of cooperation. These findings give a formal account for how selection acts on all transient states that appear in evolutionary trajectories. They also inform the strategic design of initial states in social networks to maximally promote cooperation. We also derive general results that characterize the interaction of any two strategies, not only cooperation and defection.Comment: 28 pages; final versio

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange

    Convertible Bond Underpricing: Renegotiable Covenants, Seasoning and Convergence (Published in "Management Science", Vol. 53, No. 11, November 2007, pp. 1793.1814. )

    Get PDF
    We investigate the long-standing puzzle on the underpricings of convertible bonds. We hypothesize that the observed underpricing is induced by the possibility that a convertible bond might renegotiate on some of its covenants, e.g., an imbedded put option, in financial difficulties. Consistent with our hypothesis, we find that the initial underpricing is larger for lower rated bonds. The underpricing worsens if the issuer experiences subsequent financial difficulties. However, conditional on no rating downgrades, our main empirical result shows that convertible bond prices do converge to their theoretical prices within two years. This seasoning period is shorter for higher rated convertible bonds.

    Increasing Achievable Information Rates via Geometric Shaping

    Get PDF
    Achievable information rates are used as a metric to design novel modulation formats via geometric shaping. The proposed geometrically shaped 256-ary constellation achieves SNR gains of up to 1.18 dB.Comment: Additional references have been adde

    The Masked Sample Covariance Estimator: An Analysis via Matrix Concentration Inequalities

    Get PDF
    Covariance estimation becomes challenging in the regime where the number p of variables outstrips the number n of samples available to construct the estimate. One way to circumvent this problem is to assume that the covariance matrix is nearly sparse and to focus on estimating only the significant entries. To analyze this approach, Levina and Vershynin (2011) introduce a formalism called masked covariance estimation, where each entry of the sample covariance estimator is reweighted to reflect an a priori assessment of its importance. This paper provides a short analysis of the masked sample covariance estimator by means of a matrix concentration inequality. The main result applies to general distributions with at least four moments. Specialized to the case of a Gaussian distribution, the theory offers qualitative improvements over earlier work. For example, the new results show that n = O(B log^2 p) samples suffice to estimate a banded covariance matrix with bandwidth B up to a relative spectral-norm error, in contrast to the sample complexity n = O(B log^5 p) obtained by Levina and Vershynin
    • …
    corecore