2 research outputs found
Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization
Graphene has been employed as transparent
electrodes in organic solar cells (OSCs) because of its good physical
and optical properties. However, the electrical conductivity of graphene
films synthesized by chemical vapor deposition (CVD) is still inferior
to that of conventional indium tin oxide (ITO) electrodes of comparable
transparency, resulting in a lower performance of OSCs. Here, we report
an effective method to improve the performance and long-term stability
of graphene-based OSCs using electrostatically doped graphene films
via a ferroelectric polymer. The sheet resistance of electrostatically
doped few layer graphene films was reduced to ∼70 Ω/sq
at 87% optical transmittance. Such graphene-based OSCs exhibit an
efficiency of 2.07% with a superior stability when compared to chemically
doped graphene-based OSCs. Furthermore, OSCs constructed on ultrathin
ferroelectric film as a substrate of only a few micrometers show extremely
good mechanical flexibility and durability and can be rolled up into
a cylinder with 7 mm diameter
Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus
Black phosphorus has an orthorhombic layered structure with a layer-dependent direct band gap from monolayer to bulk, making this material an emerging material for photodetection. Inspired by this and the recent excitement over this material, we studied the optoelectronics characteristics of high-quality, few-layer black phosphorus-based photodetectors over a wide spectrum ranging from near-ultraviolet (UV) to near-infrared (NIR). It is demonstrated for the first time that black phosphorus can be configured as an excellent UV photodetector with a specific detectivity ∼3 × 10<sup>13</sup> Jones. More critically, we found that the UV photoresponsivity can be significantly enhanced to ∼9 × 10<sup>4</sup> A W<sup>–1</sup> by applying a source-drain bias (<i>V</i><sub>SD</sub>) of 3 V, which is the highest ever measured in any 2D material and 10<sup>7</sup> times higher than the previously reported value for black phosphorus. We attribute such a colossal UV photoresponsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for highly efficient UV absorption due to the singularity of their nature