305 research outputs found

    Neural correlates of transitive and intransitive action imitation:an investigation using voxel-based morphometry

    Get PDF
    AbstractThe ability to reproduce visually presented actions has been studied through neuropsychological observations of patients with ideomotor apraxia. These studies include attempts to understand the neural basis of action reproduction based on lesion–symptom mapping in different patient groups. While there is a convergence of evidence that areas in the parietal and frontal lobes within the left hemisphere are involved in the imitation of a variety of actions, questions remain about whether the results generalize beyond the imitation of tool use and whether the presence of a strong grasp component of the action is critical. Here we used voxel-based lesion–symptom mapping to assess the neural substrates of imitating meaningful (familiar, MF) and meaningless (unfamiliar, ML) tool-related (transitive) and non-tool related (intransitive) actions. The analysis showed that the left parietal cortex was involved in the imitation of transitive gestures, regardless of whether they were meaningful or not. In addition there was poor reproduction of meaningless actions (both transitive and intransitive) following damage of the right frontal cortex. These findings suggest a role of right frontal regions in processing of unfamiliar actions

    Neural mechanisms of temporal resolution of attention

    Get PDF
    The dynamic nature of the world requires that our visual representations are continuously updated. These representations are more precise if there is a narrow time window over which information is averaged. We assess the neural processes of visual updating by testing patients with lesions including inferior parietal cortex, control patients and healthy adults on a continuous visual monitoring task. In Experiment 1, observers kept track of the changing spatial period of a luminance grating and identified the final spatial period after the stimulus disappeared. Healthy older adults and neurological controls were able to perform better than simulated guesses, but only 3 of 11 patients with damage including parietal cortex were able to reach performance that differed from simulated guesses. The effects were unrelated to lesion size. Poor performance on this task is consistent with an inability to selectively attend to the final moment at which the stimulus was seen. To investigate the temporal limits of attention, we varied the rate of stimulus change in Experiment 2. Performance remained poor for some patients even with slow 2.5 Hz change rates. The performance of 4 patients with parietal damage displayed poor temporal precision, namely recovery of performance with slower rates of change

    The role of the parietal cortex in inhibitory processing in the vertical meridian:Evidence from elderly brain damaged patients

    Get PDF
    We explored the effects of parietal damage on inhibitory effects of visuospatial attention, inhibition of return (IOR) and inhibitory tagging (IT), in the vertical meridian. We combined a vertical spatial cue paradigm with a Stroop task employing three different temporal intervals between the spatial cue and the target (700, 1200 and 2000 ms) in two groups of patients, one with damage to the parietal cortex and underlying white matter (the parietal patients group) and the other with damage in other brain areas not including the parietal lobe (the control patient group), and a healthy control group. Healthy controls showed the expected inhibitory effects, IOR at the 700 and 1200 intervals and IT at the 1200 interval (as evidenced in a reduction in the magnitude of Stroop interference at the cued location). On the other hand, only the group of parietal patients showed delayed onset of inhibitory effects, IOR and IT appeared at the 1200 ms and 2000 ms intervals, respectively. These findings provide evidence for a role of the parietal cortex, and the underlying fibre tracts, in inhibitory processing in the vertical meridian, with damage to the parietal cortex altering the time course of attention-dependent inhibition.</p

    Beyond Time and Space:The Effect of a Lateralized Sustained Attention Task and Brain Stimulation on Spatial and Selective Attention

    Get PDF
    The Theory of Visual Attention (TVA) provides a mathematical formalisation of the “biased competition” account of visual attention. Applying this model to individual performance in a free recall task allows the estimation of 5 independent attentional parameters: visual short-term memory (VSTM) capacity, speed of information processing, perceptual threshold of visual detection; attentional weights representing spatial distribution of attention (spatial bias), and the top-down selectivity index. While the TVA focuses on selection in space, complementary accounts of attention describe how attention is maintained over time, and how temporal processes interact with selection. A growing body of evidence indicates that different facets of attention interact and share common neural substrates. The aim of the current study was to modulate a spatial attentional bias via transfer effects, based on a mechanistic understanding of the interplay between spatial, selective and temporal aspects of attention. Specifically, we examined here: (i) whether a single administration of a lateralized sustained attention task could prime spatial orienting and lead to transferable changes in attentional weights (assigned to the left vs right hemi-field) and/or other attentional parameters assessed within the framework of TVA (Experiment 1); (ii) whether the effects of such spatial-priming on TVA parameters could be further enhanced by bi-parietal high frequency transcranial random noise stimulation (tRNS) (Experiment 2). Our results demonstrate that spatial attentional bias, as assessed within the TVA framework, was primed by sustaining attention towards the right hemi-field, but this spatial-priming effect did not occur when sustaining attention towards the left. Furthermore, we show that bi-parietal high-frequency tRNS combined with the rightward spatial-priming resulted in an increased attentional selectivity. To conclude, we present a novel, theory-driven method for attentional modulation providing important insights into how the spatial and temporal processes in attention interact with attentional selection

    Structural organization of the corpus callosum predicts attentional shifts after continuous theta burst stimulation

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention

    The structural and functional connectivity of the posterior cingulate cortex : comparison between deterministic and probabilistic tractography for the investigation of structure–function relationships

    Get PDF
    The default mode network (DMN) is one of the most studied resting-state networks, and is thought to be involved in the maintenance of consciousness within the alert human brain. Although many studies have examined the functional connectivity (FC) of the DMN, few have investigated its underlying structural connectivity (SC), or the relationship between the two. We investigated this question in fifteen healthy subjects, concentrating on connections to the precuneus/posterior cingulate cortex (PCC), commonly considered as the central node of the DMN. We used group independent component analysis (GICA) and seed-based correlation analysis of fMRI data to quantify FC, and streamline and probabilistic tractography to identify structural tracts from diffusion tensor imaging (DTI) data. We first assessed the presence of structural connections between the DMN regions identified with GICA. Of the 15 subjects, when using the probabilistic approach 15 (15) demonstrated connections between the PCC and mesial prefrontal cortex (mPFC), 11 (15) showed connections from the PCC to the right inferior parietal cortex (rIPC) and 8 (15) to the left IPC. Next, we assessed the strength of FC (magnitude of temporal correlation) and SC (mean fractional anisotropy of reconstructed tracts (streamline), number of super-threshold voxels within the mask region (probabilistic)). The lIPC had significantly reduced FC to the PCC compared to the mPFC and rIPC. No difference in SC strength between connections was found using the streamline approach. For the probabilistic approach, mPFC had significantly lower SC than both IPCs. The two measures of SC strength were significantly correlated, but not for all paired connections. Finally, we observed a significant correlation between SC and FC for both tractography approaches when data were pooled across PCC-lIPL, PCC-rIPL and PCC-mPFC connections, and for some individual paired connections. Our results suggest that the streamline approach is advantageous for characterising the connectivity of long white matter tracts (PCC-mPFC), whilst the probabilistic approach was more reliable at identifying PCC-IPC connections. The direct comparison of FC and SC indicated that pairs of nodes with stronger structural connections also had stronger functional connectivity, and that this was maintained with both tractography approaches. Whilst the definition of SC strength remains controversial, our results could be considered to provide some degree of validation for the measures of SC strength that we have used. Direct comparisons of SC and FC are necessary in order to understand the structural basis of functional connectivity, and to characterise and quantify the changes in the brain's functional architecture that occur as a result of normal physiology or pathology

    Relationship between parental feeding practices and neural responses to food cues in adolescents

    Get PDF
    Social context, specifically within the family, influences adolescent eating behaviours and thus their health. Little is known about the specific mechanisms underlying the effects of parental feeding practices on eating. We explored relationships between parental feeding practices and adolescent eating habits and brain activity in response to viewing food images. Fifty- seven adolescents (15 with type 2 diabetes mellitus, 21 obese and 21 healthy weight controls) underwent fMRI scanning whilst viewing images of food or matched control images. Participants completed the Kids Child Feeding Questionnaire, the Childrens’ Dutch Eating Behaviour Questionnaire (DEBQ) and took part in an observed meal. Parents completed the Comprehensive Feeding Practices Questionniare and the DEBQ. We were particularly interested in brain activity in response to food cues that was modulated by different feeding and eating styles. Healthy-weight participants increased activation (compared to the other groups) to food in proportion to the level of parental restriction in visual areas of the brain such as right lateral occipital cortex (LOC), right temporal occipital cortex, left occipital fusiform gyrus, left lateral and superior LOC. Adolescents with type 2 diabetes mellitus had higher activation (compared to the other groups) with increased parental restrictive feeding in areas relating to emotional control, attention and decision-making, such as posterior cingulate, precuneus, frontal operculum and right middle frontal gyrus. Participants with type 2 diabetes mellitus also showed higher activation (compared to the other groups) in the left anterior intraparietal sulcus and angular gyrus when they also reported higher self restraint. Parental restriction did not modulate food responses in obese participants, but there was increased activity in visual (visual cortex, left LOC, left occipital fusiform gyrus) and reward related brain areas (thalamus and parietal operculum) in response to parental teaching and modelling of behaviour. Parental restrictive feeding and parental teaching and modelling affected neural responses to food cues in different ways, depending on motivations and diagnoses, illustrating a social influence on neural responses to food cues

    Examining evidence for behavioural mimicry of parental eating by adolescent females. An observational study

    Get PDF
    Behavioural mimicry is a potential mechanism explaining why adolescents appear to be influenced by their parents' eating behaviour. In the current study we examined whether there is evidence that adolescent females mimic their parents when eating. Videos of thirty-eight parent and female adolescent dyads eating a lunchtime meal together were examined. We tested whether a parent placing a food item into their mouth was associated with an increased likelihood that their adolescent child would place any food item (non-specific mimicry) or the same item (specific mimicry) in their mouth at three different time frames, namely, during the same second or within the next fifteen seconds (+15), five seconds (+5) or two second (+2) period. Parents and adolescents' overall food intake was positively correlated, whereby a parent eating a larger amount of food was associated with the adolescent eating a larger meal. Across all of the three time frames adolescents were more likely to place a food item in their mouth if their parent had recently placed that same food item in their mouth (specific food item mimicry); however, there was no evidence of non-specific mimicry. This observational study suggests that when eating in a social context there is evidence that adolescent females may mimic their parental eating behaviour, selecting and eating more of a food item if their parent has just started to eat that food
    corecore