11 research outputs found

    Empirical optimization of corrosion rate for magnesium-chromium composites

    Get PDF
    363-368In this study, optimization of the corrosion rate (CR) of Mg-composites has been evaluated by varying the concentration, reinforcement percentage, and immersion time. As prime material, pure Mg is preferred for this research and chromium (Cr) consider as a reinforcing material with different percentages. CR (miles/yr) has been optimized by varying parameters such as reinforcement percentage as 3%, 5% and 7% including NaCl immersion medium (%) as 2.4%, 3.5% and 4.7% with immersion time (h) such as 48h, 72h and 96h. By using, DOF, minimal CR has been measured with the assistance of Minitab Software having ANOVA and Taguchi approaches. Optimized results reveal that the percentage of corrosion solution is influenced upto 66.10%, reinforcement percentage contributed to 27.56% and immersion time influenced upto 2.81%. An optimized combination of CR is 7wt. % Cr with 2.4% NaCl for 96h. However, microscopy results illustrate shallow crack boundaries in Mg/Cr composites due to its chemical reaction in alkaline solution

    Empirical optimization of corrosion rate for magnesium-chromium composites

    Get PDF
    In this study, optimization of the corrosion rate (CR) of Mg-composites has been evaluated by varying the concentration, reinforcement percentage, and immersion time. As prime material, pure Mg is preferred for this research and chromium (Cr) consider as a reinforcing material with different percentages. CR (miles/yr) has been optimized by varying parameters such as reinforcement percentage as 3%, 5% and 7% including NaCl immersion medium (%) as 2.4%, 3.5% and 4.7% with immersion time (h) such as 48h, 72h and 96h. By using, DOF, minimal CR has been measured with the assistance of Minitab Software having ANOVA and Taguchi approaches. Optimized results reveal that the percentage of corrosion solution is influenced upto 66.10%, reinforcement percentage contributed to 27.56% and immersion time influenced upto 2.81%. An optimized combination of CR is 7wt. % Cr with 2.4% NaCl for 96h. However, microscopy results illustrate shallow crack boundaries in Mg/Cr composites due to its chemical reaction in alkaline solution

    Influence of B4C on microstructural, mechanical and wear properties of Mg-based composite by two-step stir casting

    Get PDF
    This paper has been focused on the porosity, hardness, tensile and abrasion wear of Mg-based B4C composites developed by squeezed vacuum-based stir casting (SVSC) process by adding 3, 5, 7, 9 wt. % of B4C. Also, an electromagnetic stir casting has been used to synthesize similar composition specimens in comparison to the SVSC results. Additionally, electron microscopy has been used for analyzing the micro structural, fractographic and worn images of Mg-based B4C composites and to validate appropriate fabrication method. A tribo-test has been carried out by two-body abrasion condition at 20N and 30N load for as sliding distance of 100m and 5m/s of speed. The results reveal that the SVSC process produces homogeneously distributed B4C particles in Mg-matrix as compared to the electromagnetic stirring. The mechanical properties of Mg/B4C composites show their significant enhancement with the addition of B4C content in Mg-matrix. B4C composites show an increment of 33-48% of hardness as compared to Mg-matrix. Mg-matrix having 9 wt. % of B4C composite reveals the least tensile strength and fractured images show the cleavage planes, micro voids as well as micro cracks. Although, worn images shows oxidation and ploughing mechanism with the increase in load and depth of penetration in Mg-matrix B4C composites

    Influence of B4C on microstructural, mechanical and wear properties of Mg-based composite by two-step stir casting

    Get PDF
    189-197This paper has been focused on the porosity, hardness, tensile and abrasion wear of Mg-based B4C composites developed by squeezed vacuum-based stir casting (SVSC) process by adding 3, 5, 7, 9 wt. % of B4C. Also, an electromagnetic stir casting has been used to synthesize similar composition specimens in comparison to the SVSC results. Additionally, electron microscopy has been used for analyzing the micro structural, fractographic and worn images of Mg-based B4C composites and to validate appropriate fabrication method. A tribo-test has been carried out by two-body abrasion condition at 20N and 30N load for as sliding distance of 100m and 5m/s of speed. The results reveal that the SVSC process produces homogeneously distributed B4C particles in Mg-matrix as compared to the electromagnetic stirring. The mechanical properties of Mg/B4C composites show their significant enhancement with the addition of B4C content in Mg-matrix. B4C composites show an increment of 33-48% of hardness as compared to Mg-matrix. Mg-matrix having 9 wt. % of B4C composite reveals the least tensile strength and fractured images show the cleavage planes, micro voids as well as micro cracks. Although, worn images shows oxidation and ploughing mechanism with the increase in load and depth of penetration in Mg-matrix B4C composites

    Assessment of Biomass Potential in Engine Emission Reduction

    Get PDF
    77-80The twin crisis of environmental degradation and fossil fuel depletion has confronted the world with the upcoming threat to seek the solution for some alternate fuel. The present condition of environment forces the search of some suitable alternate fuel. The present degradation of environment is also mainly influenced by the diesel vehicles. The emissions released by these diesel vehicles not only degrade the environment but also increase the number of health diseases. The present research on bio-fuels will lead to develop a sustainable solution to this problem and also create a harmonic relationship between the economy and ecosystem. The present research will provide the optimized blending ratio compression ratio and other operating parameters to be selected while approaching to sustainable output. The present study will depict the behavior of different bio-fuels poured in VCR engine at different compression ratio at different operating parameters. The outcomes of this research paper reveals the discussion on the potential assessment of different biofuels in the reduction of engine emissions

    Assessment of Biomass Potential in Engine Emission Reduction

    Get PDF
    The twin crisis of environmental degradation and fossil fuel depletion has confronted the world with the upcoming threat to seek the solution for some alternate fuel. The present condition of environment forces the search of some suitable alternate fuel. The present degradation of environment is also mainly influenced by the diesel vehicles. The emissions released by these diesel vehicles not only degrade the environment but also increase the number of health diseases. The present research on bio-fuels will lead to develop a sustainable solution to this problem and also create a harmonic relationship between the economy and ecosystem. The present research will provide the optimized blending ratio compression ratio and other operating parameters to be selected while approaching to sustainable output. The present study will depict the behavior of different bio-fuels poured in VCR engine at different compression ratio at different operating parameters. The outcomes of this research paper reveals the discussion on the potential assessment of different biofuels in the reduction of engine emissions

    Role of Automation in Energy Management and Distribution

    Get PDF
    This paper discusses about how automation plays its role in achieving sustainable energy management in broadly two aspects, industries and homes. Industrial or factory automation has its own benefits, and techniques have been evolved to cut down the power usage to significant levels of the conventional ways using Variable Frequency Drives (VFD). Home automation is equally important, controlling electrical appliances through microcontrollers and saving electricity automatically detecting their usage needs. It also discusses about the requisites for energy management and the economic aspect of using energy management systems
    corecore