86 research outputs found

    Mortality risk for kidney transplant candidates with diabetes:a population cohort study

    Get PDF
    AIMS/HYPOTHESIS: It is unclear whether kidney transplant candidates with diabetes have equitable transplantation opportunities or have divergent survival probabilities stratified by kidney replacement therapy. The aim of this study was to investigate these two issues using national transplant registry data in the UK.METHODS: A cohort study was undertaken of prospectively collected registry data of all wait-listed people with kidney failure receiving dialysis in the UK. All people listed for their first kidney-alone transplant between 2000 and 2019 were included. Stratification was done for cause of kidney failure. Primary outcome was all-cause mortality. Time-to-death from listing was analysed using adjusted non-proportional hazard Cox regression models, with transplantation handled as a time-dependent covariate.RESULTS: A total of 47,917 wait-listed people with kidney failure formed the total study cohort, of whom 6594 (13.8%) had diabetes classified as cause of kidney failure. People with kidney failure with diabetes comprised 27.6% of the cohort (n=3681/13,359) that did not proceed to transplantation vs only 8.4% (n=2913/34,558) of the cohort that received a transplant (p&lt;0.001). Kidney transplant candidates with diabetes were more likely to be older, of male sex and of ethnic minority background compared with those without diabetes. In an adjusted analysis, compared with remaining on dialysis, any kidney transplant provided survival benefit for wait-listed kidney transplant candidates regardless of diabetes as cause of kidney failure (RR 0.26 [95% CI 0.25, 0.27], p&lt;0.001).CONCLUSIONS/INTERPRETATION: Kidney transplant candidates with diabetes have a lower chance of transplantation despite better survival after kidney transplantation vs remaining on dialysis. The reasons for this require further investigation to ensure equal transplantation opportunities.</p

    Survival Advantage Comparing Older Living Donor Versus Standard Criteria Donor Kidney Transplants

    Get PDF
    The aim of this analysis was to explore mortality outcomes for kidney transplant candidates receiving older living donor kidneys (age ≥60 years) versus younger deceased donors or remaining on dialysis. From 2000 to 2019, all patients on dialysis listed for their first kidney-alone transplant were included in a retrospective cohort analysis of UK transplant registry data. The primary outcome was all-cause mortality, with survival analysis conducted by intention-to-treat principle. Time-to-death from listing was modelled using nonproportional hazard Cox regression models with transplantation handled as a time-dependent covariate. A total of 32,978 waitlisted kidney failure patients formed the primary study cohort, of whom 18,796 (58.5%) received a kidney transplant (1,557 older living donor kidneys and 18,062 standard criteria donor kidneys). Older living donor kidney transplantation constituted only 17.0% of all living donor kidney transplant activity (overall cohort; n = 9,140). Recipients of older living donor kidneys had reduced all-cause mortality compared to receiving SCD kidneys (HR 0.904, 95% CI 0.845–0.967, p = 0.003) and much lower all-cause mortality versus remaining on the waiting list (HR 0.160, 95% CI 0.149–0.172, p &lt; 0.001). Older living kidney donors should be actively explored to expand the living donor kidney pool and are an excellent treatment option for waitlisted kidney transplant candidates

    Delays in Multiple Sclerosis diagnosis (DIMES): protocol for a multicentre, observational study of multiple sclerosis diagnostic pathways in the United Kingdom and Republic of Ireland

    Get PDF
    Background: Multiple sclerosis (MS) is a leading cause of non-traumatic disability in young adults. Accumulating evidence indicates early diagnosis and early treatment improves long-term outcomes. However, the MS diagnostic pathway is increasingly complex, and delays may occur at several stages. Factors causing delays remain understudied. We aim to quantify the time taken for MS to be diagnosed, and characterise the diagnostic pathway and initial care provided, in the United Kingdom (UK) and Republic of Ireland (ROI). Methods: Delays In MultiplE Sclerosis diagnosis (DIMES) in the UK and ROI is a multicentre, observational, retrospective study that will be conducted via the Neurology and Neurosurgery Interest Group (NANSIG) collaborative network. Any hospital in the UK and ROI providing an MS diagnostic service is eligible to participate. Data on consecutive individuals newly diagnosed with MS between 1st July 2022 and 31st December 2022 will be collected. The primary outcomes are 1) time from symptoms/signs prompting referral to neurology, to MS diagnosis; and 2) time from referral to neurology for suspected MS, to MS diagnosis. Secondary outcomes include: MS symptoms, referring specialties, investigations performed, neurology appointments, functional status, use of disease modifying treatments, and support at diagnosis including physical activity, and follow up. Demographic characteristics of people newly diagnosed with MS will be summarised, adherence to quality standards summarised as percentages, and time-to-event variables presented with survival curves. Multivariable models will be used to investigate the association of demographic and clinical factors with time to MS diagnosis, as defined in our primary outcomes. Discussion: DIMES aims to be the largest multicentre study of the MS diagnostic pathway in the UK and ROI. The proposed data collection provides insights that cannot be provided from contemporary registries, and the findings will inform approaches to MS services nationally in the future

    COVID-19-related absence among surgeons: development of an international surgical workforce prediction model

    Get PDF
    Background: During the initial COVID-19 outbreak up to 28.4 million elective operations were cancelled worldwide, in part owing to concerns that it would be unsustainable to maintain elective surgery capacity because of COVID-19-related surgeon absence. Although many hospitals are now recovering, surgical teams need strategies to prepare for future outbreaks. This study aimed to develop a framework to predict elective surgery capacity during future COVID-19 outbreaks. Methods: An international cross-sectional study determined real-world COVID-19-related absence rates among surgeons. COVID-19-related absences included sickness, self-isolation, shielding, and caring for family. To estimate elective surgical capacity during future outbreaks, an expert elicitation study was undertaken with senior surgeons to determine the minimum surgical staff required to provide surgical services while maintaining a range of elective surgery volumes (0, 25, 50 or 75 per cent). Results: Based on data from 364 hospitals across 65 countries, the COVID-19-related absence rate during the initial 6 weeks of the outbreak ranged from 20.5 to 24.7 per cent (mean average fortnightly). In weeks 7-12, this decreased to 9.2-13.8 per cent. At all times during the COVID-19 outbreak there was predicted to be sufficient surgical staff available to maintain at least 75 per cent of regular elective surgical volume. Overall, there was predicted capacity for surgeon redeployment to support the wider hospital response to COVID-19. Conclusion: This framework will inform elective surgical service planning during future COVID-19 outbreaks. In most settings, surgeon absence is unlikely to be the factor limiting elective surgery capacit

    Surgical Site Infection after Craniotomy in Neuro-Oncology (SINO): A protocol for an international prospective multicentre service evaluation across the United Kingdom and Ireland.

    Get PDF
    IntroductionGiven its proximity to the central nervous system, surgical site infections (SSIs) after craniotomy (SSI-CRAN) represent a serious adverse event. SSI-CRAN are associated with substantial patient morbidity and mortality. Despite the recognition of SSI in other surgical fields, there is a paucity of evidence in the neurosurgical literature devoted to skin closure, specifically in patients with brain tumors. The primary objective of this service evaluation is to ascertain the incidence and the risk factors associated with SSI-CRAN. The secondary objectives would be a) to ascertain the incidence of SSI-CRAN in sutured versus stapled wounds, after accounting for patient, surgical and hospital confounders of SSI-CRAN and b) to determine the percentage of patients with gliomas that begin adjuvant oncological treatment in patients with infection versus those without infection.MethodsSurgical Site Infection after Craniotomy in Neuro-Oncology (SINO) is a international prospective multicentre service evaluation that will include patients with an intracranial neoplasm, both primary and secondary neoplasms, treated with cranial surgery (including biopsy). Consecutive paediatric (<18 years) and adult (≥18 years) patients diagnosed with a brain tumour, undergoing cranial surgery between 1st October 2024 and 1st December 2024 will be included. Prospective data will be collected with a follow-up of 90 days

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    Get PDF
    Background The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. Methods First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5, 2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. Findings In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 clinicians (23 [33%] women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45·6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84·5 (95% CI 84·1–84·9), which varied between HIC (88·5 [89·0–88·0]), MIC (81·8 [82·5–81·1]), and LIC (66·8 [64·9–68·7]) settings. In the third phase, 1217 (74·6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51·4%) were from HIC, 538 (44·2%) from MIC, and 54 (4·4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3·6% (95% CI 3·0–4·1; p<0·0001) increase in SVR. This was consistent in HIC (4·8% [4·1–5·5]; p<0·0001), MIC (2·8 [2·0–3·7]; p<0·0001), and LIC (3·8 [1·3–6·7%]; p<0·0001) settings. Interpretation The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs. Funding National Institute for Health Research (NIHR) Global Health Research Unit on Global Surgery, NIHR Academy, Association of Coloproctology of Great Britain and Ireland, Bowel Research UK, British Association of Surgical Oncology, British Gynaecological Cancer Society, and Medtronic.publishedVersio

    Timing of surgery following SARS-CoV-2 infection:an international prospective cohort study

    Get PDF
    Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. From 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odd ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odd ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.</p

    Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans.

    Get PDF
    BACKGROUND: The COVID-19 pandemic has disrupted routine hospital services globally. This study estimated the total number of adult elective operations that would be cancelled worldwide during the 12 weeks of peak disruption due to COVID-19. METHODS: A global expert response study was conducted to elicit projections for the proportion of elective surgery that would be cancelled or postponed during the 12 weeks of peak disruption. A Bayesian β-regression model was used to estimate 12-week cancellation rates for 190 countries. Elective surgical case-mix data, stratified by specialty and indication (surgery for cancer versus benign disease), were determined. This case mix was applied to country-level surgical volumes. The 12-week cancellation rates were then applied to these figures to calculate the total number of cancelled operations. RESULTS: The best estimate was that 28 404 603 operations would be cancelled or postponed during the peak 12 weeks of disruption due to COVID-19 (2 367 050 operations per week). Most would be operations for benign disease (90·2 per cent, 25 638 922 of 28 404 603). The overall 12-week cancellation rate would be 72·3 per cent. Globally, 81·7 per cent of operations for benign conditions (25 638 922 of 31 378 062), 37·7 per cent of cancer operations (2 324 070 of 6 162 311) and 25·4 per cent of elective caesarean sections (441 611 of 1 735 483) would be cancelled or postponed. If countries increased their normal surgical volume by 20 per cent after the pandemic, it would take a median of 45 weeks to clear the backlog of operations resulting from COVID-19 disruption. CONCLUSION: A very large number of operations will be cancelled or postponed owing to disruption caused by COVID-19. Governments should mitigate against this major burden on patients by developing recovery plans and implementing strategies to restore surgical activity safely

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    Get PDF
    We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or ≥ 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care
    corecore