10,715 research outputs found
Viking GC/MS mechanisms design and performance
The Viking Lander gas chromatograph/mass spectrometer will analyze pyrolyzed samples of the Martian surface for organic content. The surface-sample loader and pyrolyzer assembly (SSPLA) is described, along with the major problems encountered during design and testing. Three mechanisms were developed to implement the required SSLPA functions: (1) a soil loader that forces soil from a filled rotating funnel into each of three ovens located on a carriage, (2) a Geneva drive for rotating and precisely indexing the ovens to receive sample, and (3) a toggle-clamp mechanism for sealing the ovens by forcing circular double knife edges into gold sealing surfaces
Exact methods for Campi plots
We introduce for canonical fragmention models an exact method for computing
expectation values which exclude the largest cluster. This method allows for
the computation of the reduced multiplicity and other quantities of interest
introduced by Campi, and a comparison shows that the percolation model and a
recent canonical model differ mostly only in small respects in these ensemble
averages.Comment: 7 pages, revtex 3.0, 2 figs. available on reques
Debris control design achievements of the booster separation motors
The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented
A study of the phase transition in the usual statistical model for nuclear multifragmentation
We use a simplified model which is based on the same physics as inherent in
most statistical models for nuclear multifragmentation. The simplified model
allows exact calculations for thermodynamic properties of systems of large
number of particles. This enables us to study a phase transition in the model.
A first order phase transition can be tracked down. There are significant
differences between this phase transition and some other well-known cases
The design and evaluation of grazing incidence relay optics
X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described
Vacuum-UV negative photoion spectroscopy of CF3Cl, CF3Br and CF3I
Using synchrotron radiation negative ions have been detected by mass spectrometry following vacuum-UV photoexcitation of trifluorochloromethane (CFCl), trifluorobromomethane (CFBr) and trifluoroiodomethane (CFI). The anions F, X, F, FX, CF, CF and CF were observed from all three molecules, where X = Cl, Br or I, and their ion yields recorded in the range 8-35 eV. With the exception of Br and I, the anions observed show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Dissociative electron attachment, following photoionization of CFBr and CFI as the source of low-energy electrons, is shown to dominate the observed Br and I signals, respectively. Cross sections for ion-pair formation are put on to an absolute scale by calibrating the signal strengths with those of F from both SF and CF. These anion cross sections are normalized to vacuum-UV absorption cross sections, where available, and the resulting quantum yields are reported. Anion appearance energies are used to calculate upper limits to 298 K bond dissociation energies for (CF-X) which are consistent with literature values. We report new data for (CFI-F) ≤ 2.7 ± 0.2 eV and (CFI) ≤ (598 ± 22) kJ mol. No ion-pair formation is observed below the ionization energy of the parent molecule for CFCl and CFBr, and only weak signals (in both I and F) are detected for CFI. These observations suggest neutral photodissociation is the dominant exit channel to Rydberg state photoexcitation at these lower energies
Studies in the statistical and thermal properties of hadronic matter under some extreme conditions
The thermal and statistical properties of hadronic matter under some extreme
conditions are investigated using an exactly solvable canonical ensemble model.
A unified model describing both the fragmentation of nuclei and the thermal
properties of hadronic matter is developed. Simple expressions are obtained for
quantities such as the hadronic equation of state, specific heat,
compressibility, entropy, and excitation energy as a function of temperature
and density. These expressions encompass the fermionic aspect of nucleons, such
as degeneracy pressure and Fermi energy at low temperatures and the ideal gas
laws at high temperatures and low density. Expressions are developed which
connect these two extremes with behavior that resembles an ideal Bose gas with
its associated Bose condensation. In the thermodynamic limit, an infinite
cluster exists below a certain critical condition in a manner similar to the
sudden appearance of the infinite cluster in percolation theory. The importance
of multiplicity fluctuations is discussed and some recent data from the EOS
collaboration on critical point behavior of nuclei can be accounted for using
simple expressions obtained from the model.Comment: 22 pages, revtex, includes 6 figures, submitted to Phys. Rev.
Rare isotope production in statistical multifragmentation
Producing rare isotopes through statistical multifragmentation is
investigated using the Mekjian method for exact solutions of the canonical
ensemble. Both the initial fragmentation and the the sequential decay are
modeled in such a way as to avoid Monte Carlo and thus provide yields for
arbitrarily scarce fragments. The importance of sequential decay, exact
particle-number conservation and the sensitivities to parameters such as
density and temperature are explored. Recent measurements of isotope ratios
from the fragmentation of different Sn isotopes are interpreted within this
picture.Comment: 10 eps figure
Cross-link governed dynamics of biopolymer networks
Cytoskeletal networks of biopolymers are cross-linked by a variety of
proteins. Experiments have shown that dynamic cross-linking with physiological
linker proteins leads to complex stress relaxation and enables network flow at
long times. We present a model for the mechanical properties of transient
networks. By a combination of simulations and analytical techniques we show
that a single microscopic timescale for cross-linker unbinding leads to a broad
spectrum of macroscopic relaxation times, resulting in a weak power-law
dependence of the shear modulus on frequency. By performing rheological
experiments, we demonstrate that our model quantitatively describes the
frequency behavior of actin network cross-linked with -Actinin- over
four decades in frequency.Comment: 4 page
- …