49 research outputs found

    Nonprofit Georgia: Geography

    Get PDF
    This pamphlet summarizes statistics on the nonprofit sector in Georgia, assembled and analyzed by a Nonprofit Studies Program research team. The focus of this second report in the "Nonprofit Georgia" series is the geographic distribution of Georgia's nonprofit resources. Numerous tables and exhibits report on the distribution of public charities and foundations by geographic area, and compare this to the distribution of population and income in the state. Public support and government grants to charities are analyzed by geographic region, as is the geographic distribution of grants by Georgia foundations. Analysis is based primarily on 990 and 990-PF forms filed by Georgia public charities and foundations in 2000 and 2005. This report is a part of ongoing research on public charities and foundations in the state of Georgia, made possible through a generous grant from the Wilbur and Hilda Glenn Family Foundation. Research Report Number 07-0

    Nonprofit Georgia At a Glance

    Get PDF
    This pamphlet summarizes statistics on the nonprofit sector in Georgia, assembled and analyzed by a Nonprofit Studies Program research team. Numerous tables and exhibits report on the size and scope of the sector, variations in public charities by subsector and geography, and the characteristics and grantmaking activities of Georgia's top foundations. Analysis was based primarily on 990 and 990-PF forms filed by Georgia public charities and foundations in 2000 and 2005. This report is a part of ongoing research on public charities and foundations in the state of Georgia, made possible through a generous grant from the Wilbur and Hilda Glenn Family Foundation. Research Report Number 07-0

    Erysipelothrix spp. past, present and future directions in vaccine research

    Get PDF
    Erysipelothrix spp. comprise a group of small Gram-positive bacteria that can infect a variety of hosts including mammals, fish, birds, reptiles and insects. Among the eight Erysipelothrix species that have been described to date, only E. rhusiopathiae plays a major role in farmed livestock where it is the causative agent of erysipelas. E. rhusiopathiae also has zoonotic potential and can cause erysipeloid in humans with a clear occupational link to meat and fish industries. While there are 28 known Erysipelothrix serovars, over 80% of identified isolates belong to serovars 1 or 2. Vaccines to protect pigs against E. rhusiopathiae first became available in 1883 as a response to an epizootic of swine erysipelas in southern France. The overall vaccine repertoire was notably enlarged between the 1940s and 1960s following major outbreaks of swine erysipelas in the Midwest USA and have changed little since. Traditionally, E. rhusiopathiae serovar 1a or 2 isolates were inactivated (bacterins) or attenuated and these types of vaccines are still used today on a global basis. E. rhusiopathiae vaccines are most commonly used in pigs, poultry and sheep where the bacterium can cause considerable economic losses. In addition, erysipelas vaccination is also utilized in selected vulnerable susceptible populations, such as marine mammals in aquariums, which are commonly vaccinated at regular intervals. While commercially produced erysipelas vaccines appear to provide good protection against clinical disease, in recent years there has been an increase in perceived vaccine failures in farmed animals, especially in organic outdoor operations. Moreover, clinical erysipelas outbreaks have been reported in animal populations not previously considered at risk. This has raised concerns over a possible lack of vaccine protection across various production species. This review focuses on summarizing the history and the present status of E. rhusiopathiae vaccines, the current knowledge on protection including surface antigens, and also provides an outlook into future directions for vaccine development

    Development of a DNA Barcoding System for Seagrasses: Successful but Not Simple

    Get PDF
    Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL) rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches contribute to the understanding of the morphological plasticity of seagrasses versus genetic differentiation
    corecore