4,172 research outputs found
Efficient Elastic Net Regularization for Sparse Linear Models
This paper presents an algorithm for efficient training of sparse linear
models with elastic net regularization. Extending previous work on delayed
updates, the new algorithm applies stochastic gradient updates to non-zero
features only, bringing weights current as needed with closed-form updates.
Closed-form delayed updates for the , , and rarely used
regularizers have been described previously. This paper provides
closed-form updates for the popular squared norm and elastic net
regularizers.
We provide dynamic programming algorithms that perform each delayed update in
constant time. The new and elastic net methods handle both fixed and
varying learning rates, and both standard {stochastic gradient descent} (SGD)
and {forward backward splitting (FoBoS)}. Experimental results show that on a
bag-of-words dataset with features, but only nonzero features on
average per training example, the dynamic programming method trains a logistic
regression classifier with elastic net regularization over times faster
than otherwise
Poisson noise reduction with non-local PCA
Photon-limited imaging arises when the number of photons collected by a
sensor array is small relative to the number of detector elements. Photon
limitations are an important concern for many applications such as spectral
imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson
distribution is used to model these observations, and the inherent
heteroscedasticity of the data combined with standard noise removal methods
yields significant artifacts. This paper introduces a novel denoising algorithm
for photon-limited images which combines elements of dictionary learning and
sparse patch-based representations of images. The method employs both an
adaptation of Principal Component Analysis (PCA) for Poisson noise and recently
developed sparsity-regularized convex optimization algorithms for
photon-limited images. A comprehensive empirical evaluation of the proposed
method helps characterize the performance of this approach relative to other
state-of-the-art denoising methods. The results reveal that, despite its
conceptual simplicity, Poisson PCA-based denoising appears to be highly
competitive in very low light regimes.Comment: erratum: Image man is wrongly name pepper in the journal versio
- …