707 research outputs found

    Unified description of fission in fusion and spallation reactions

    Full text link
    We present a statistical-model description of fission, in the framework of compound-nucleus decay, which is found to simultaneously reproduce data from both heavy-ion-induced fusion reactions and proton-induced spallation reactions at around 1 GeV. For the spallation reactions, the initial compound-nucleus population is predicted by the Li\`{e}ge Intranuclear Cascade Model. We are able to reproduce experimental fission probabilities and fission-fragment mass distributions in both reactions types with the same parameter sets. However, no unique parameter set was obtained for the fission probability. The introduction of fission transients can be offset by an increase of the ratio of level-density parameters for the saddle-point and ground-state configurations. Changes to the finite-range fission barriers could be offset by a scaling of the Bohr-Wheeler decay width as predicted by Kramers. The parameter sets presented allow accurate prediction of fission probabilities for excitation energies up to 300 MeV and spins up to 60 \hbar.Comment: 16 pages, 20 figures. Submitted to Phys. Rev.

    Isospin dependence of nucleon Correlations in ground state nuclei

    Full text link
    The dispersive optical model (DOM) as presently implemented can investigate the isospin (nucleon asymmetry) dependence of the Hartree-Fock-like potential relevant for nucleons near the Fermi energy. Data constraints indicate that a Lane-type potential adequately describes its asymmetry dependence. Correlations beyond the mean-field can also be described in this framework, but this requires an extension that treats the non-locality of the Hartree-Fock-like potential properly. The DOM has therefore been extended to properly describe ground-state properties of nuclei as a function of nucleon asymmetry in addition to standard ingredients like elastic nucleon scattering data and level structure. Predictions of nucleon correlations at larger nucleon asymmetries can then be made after data at smaller asymmetries constrain the potentials that represent the nucleon self-energy. A simple extrapolation for Sn isotopes generates predictions for increasing correlations of minority protons with increasing neutron number. Such predictions can be investigated by performing experiments with exotic beams. The predicted neutron properties for the double closed-shell 132Sn nucleus exhibit similar correlations as those in 208Pb. Future relevance of these studies for understanding the properties of all nucleons, including those with high momentum, and the role of three-body forces in nuclei are briefly discussed. Such an implementation will require a proper treatment of the non-locality of the imaginary part of the potentials and a description of high-momentum nucleons as experimentally constrained by the (e,e'p) reactions performed at Jefferson Lab.Comment: 7 pages and 7 figure
    corecore