76 research outputs found
Optimal Distributed Scheduling in Wireless Networks under the SINR interference model
Radio resource sharing mechanisms are key to ensuring good performance in
wireless networks. In their seminal paper \cite{tassiulas1}, Tassiulas and
Ephremides introduced the Maximum Weighted Scheduling algorithm, and proved its
throughput-optimality. Since then, there have been extensive research efforts
to devise distributed implementations of this algorithm. Recently, distributed
adaptive CSMA scheduling schemes \cite{jiang08} have been proposed and shown to
be optimal, without the need of message passing among transmitters. However
their analysis relies on the assumption that interference can be accurately
modelled by a simple interference graph. In this paper, we consider the more
realistic and challenging SINR interference model. We present {\it the first
distributed scheduling algorithms that (i) are optimal under the SINR
interference model, and (ii) that do not require any message passing}. They are
based on a combination of a simple and efficient power allocation strategy
referred to as {\it Power Packing} and randomization techniques. We first
devise algorithms that are rate-optimal in the sense that they perform as well
as the best centralized scheduling schemes in scenarios where each transmitter
is aware of the rate at which it should send packets to the corresponding
receiver. We then extend these algorithms so that they reach
throughput-optimality
- …