315 research outputs found

    Ultrafast Ion Transfer of Metal–Organic Framework Interface for Highly Efficient Energy Storage

    No full text
    Flexible supercapacitors are favorable for wearable electronics. However, their high-rate capability and mechanical properties are limited because of unsatisfactory ion transfer kinetics and interfacial modulus mismatch inside devices. Here, we develop a metal–organic framework interface with superior electrical and mechanical properties for supercapacitors. The interfacial mechanism facilitates ultrafast ion transfer with an energy barrier reduction of 43% compared with that of conventional transmembrane transport. It delivers high specific capacity at a wide rate range and exhibits ultrastability beyond 30000 charge–discharge cycles. Furthermore, meliorative modulus mismatch benefited from ultrathin interface design that improves mechanical properties of flexible supercapacitors. It delivers a stable energy supply under various mechanical conditions like bending and twisting status and displays ultrastable mechanical properties with performance retention of 95.5% after 10 000 bending cycles. The research paves the way for interfacial engineering for ultrastable electrochemical devices

    All-Temperature Flexible Supercapacitors Enabled by Antifreezing and Thermally Stable Hydrogel Electrolyte

    No full text
    All-temperature flexible supercapacitors have not been realized because of challenges from conventional hydrogel electrolytes. Large amounts of water in hydrogel electrolytes inevitably freeze and restrict ion transport at subzero temperatures, and their structures are unstable under high temperature. Here, all-temperature flexible supercapacitors are reported based on an antifreezing and thermally stable montmorillonite/poly­(vinyl alcohol) (MMT/PVA) hydrogel electrolyte. MMT materials enhance the thermal stability of the hydrogel, and their lamellar structures facilitate ion conduction due to formation of oriented conductive pathways. The aqueous electrolyte with a freezing point below −50 °C is employed by simply introducing dimethyl sulfoxide. The electrolyte exhibits high ionic conductivity of 0.17 × 10–4 and 0.76 × 10–4 S cm–1 under −50 and 90 °C, respectively. The supercapacitor delivers high capacities under a wide temperature range from −50 to 90 °C and displays excellent cycling stability over 10000 cycles. Because of the hydrogel electrolyte’s superior mechanical properties, the device gives stable energy capacity under flexible conditions

    1.89 $ kg<sup>–1</sup> Lake-Water-Based Semisolid Electrolytes for Highly Efficient Energy Storage

    No full text
    Solid electrolytes with fast ion kinetics and superior mechanical properties are critical to electrochemical energy devices; however, how to design low-cost, high-performance solid electrolytes has become a critical challenge in the energy field, and significant progress has not been achieved until now. Here, lake-water-based semisolid electrolytes with a low cost of 1.89 $ kg–1 have been put forward for the purpose of market promotion. By virtue of the palygorskite dopants and lake water source, the electrolytes display satisfying mechanical, electrical, and electrochemical properties as well as economic benefits. The application potential of electrolytes has been demonstrated by employing a polyelectrolyte with ionic conductivity of 0.82 × 10–4 S cm–1 in flexible supercapacitors. The as-assembled devices give a high energy density of 54.72 Wh kg–1 and excellent cycling stability with a capacity retention of 94.8% over 20 000 cycles. The flexibility of devices has been verified through 5000 repetitive bending tests. Our work presents insight into the design of flexible solid electrolytes based on cheap and green raw materials

    Universal Chemiluminescence Flow-Through Device Based on Directed Self-Assembly of Solid-State Organic Chromophores on Layered Double Hydroxide Matrix

    No full text
    In this work, a universal chemiluminescence (CL) flow-through device suitable for various CL resonance energy transfer (CRET) systems has been successfully fabricated. Highly efficient CRET in solid-state photoactive organic molecules can be achieved by assembling them on the surface of layered double hydroxides (LDHs). We attribute these observations to the suppression of the intermolecular π–π stacking interactions among aromatic rings and the improvement of molecular orientation and planarity in the LDH matrix, enabling a remarkable increase in fluorescence lifetime and quantum yield of organic molecules. Under optimal conditions, using peroxynitrous acid–fluorescein dianion (FLUD) as a model CRET system, trace FLUD (10 μM) was assembled on the surface of LDHs. Peroxynitrous acid/nitrite could be assayed in the range of 1.0–500 μM, and the detection limit for peroxynitrous acid/nitrite (S/N = 3) was 0.6 μM. This CL flow-through device exhibited operational stability, high reproducibility, and long lifetime. While LDHs were immobilized in a flow-through device in the absence of FLUD, the detection limit for peroxynitrous acid/nitrite was 100 μM. On the other hand, FLUD at the same concentration can not enhance the CL intensity of peroxynitrous acid system. This fabricated CL flow-through column has been successfully applied to determine nitrite in sausage samples with recoveries of 98–102%. These satisfactory results demonstrated that our studies pave a novel way toward flow-through column-based CRET using solid-state organic molecules as acceptors for signal amplification

    Direct Investigation of Excited C<sub>60</sub> Dianion and Its Intramolecular Electron Transfer Behaviors

    No full text
    For the first time, the dynamics of excited fullerene dianions and associated intramolecular electron transfer (ET) were directly investigated by using femtosecond pump–probe laser flash photolysis on selectively reduced C60, pyrrolidino[60]fullerene (C60H), and dyads including C60-naphthalenediimide (NDI) and C60-pyromellitimide (PI). Upon near-infrared laser excitation, the excited dianion of C60 or C60H displayed two states with lifetimes of less than one and several tens of ps, attributed to prompt internal conversion from the theoretically predicted Sn state. Furthermore, the ET processes from the excited C602– in dyad molecules, including C602–-NDI•– and C602–-PI•–, were confirmed with varied ET rate constants due to the difference in the driving force for ET. The current findings provide a clear description of the hitherto uncharted excited-state and photoinduced ET characteristics of fullerene dianions, paving the way for photochemical studies of excited multi-ions (excited multi-polarons) and their application in organic semiconducting materials

    Highly Sensitive Artificial Skin Perception Enabled by a Bio-inspired Interface

    No full text
    Piezoionic strain sensors have attracted enormous attention in artificial skin perception because of high sensitivity, lightweight, and flexibility. However, their sensing properties are limited by a weak material interface based on physical adhesion, which usually leads to fast performance deterioration under mechanical conditions. In this work, a bio-inspired interface has been reported based on an in situ growth strategy and then utilized for piezoionic sensor assembly. The robust coupling interface provides fast kinetic of ion transfer and prevents interface slippage under external strains. The as-fabricated sensors give high sensing voltage with high sensitivity. It delivers excellent cycling stability with performance retention above 90% over thousands of bending cycles in air. Further, the sensors have been explored as an effective platform for skin perception, and many detections can be realized within our devices, such as skin touch, eye movement, cheek bulging, and finger movement

    Photoaccelerated Hole Transfer in Oligothiophene Assemblies

    No full text
    A new series of mesitylene-linked oligothiophenes (<i>n</i>T, <i>n</i> is the number of thiophene units), including 2T-M, 3T-M, 4T-M, 4T-M-2T, and 4T-M-3T, was prepared to investigate the intramolecular hole transfer (HT) from the excited radical cation for the first time. The results of spectroscopic and theoretical studies indicated that mesitylene acts as a spacer minimizing the perturbation to the thiophene π-conjugation and increasing the stability of <i>n</i>T radical cations (<i>n</i>T<sup>•+</sup>). Femtosecond laser flash photolysis was applied to the FeCl<sub>3</sub>-oxidized 4T<sup>•+</sup>-M, 4T<sup>•+</sup>-M-2T, and 4T<sup>•+</sup>-M-3T. Upon 670 nm laser excitation, the transient absorption spectra of 4T<sup>•+</sup>-M showed the existence of two species as the D<sub>1</sub> and D<sub>0</sub><sup>hot</sup> states. The intramolecular HT processes from excited 4T<sup>•+</sup> with the time constants of 1.6 and 0.8 ps were observed upon excitation of 4T<sup>•+</sup>-M-2T and 4T<sup>•+</sup>-M-3T, respectively. This is the first capture of such ultrafast processes with the subsequent back HT from the ground-state 2T<sup>•+</sup> or 3T<sup>•+</sup> in <i>n</i>T assemblies. The current findings indicated an accelerated migration of photocarriers (polarons) in thiophene-based p-type semiconductor materials upon irradiation and provided a fresh viewpoint to understand the successive HT in polythiophenes for various organic molecular devices

    Engineering Plasmon-Enhanced Fluorescent Gold Nanoclusters Using Bovine Serum Albumin as a Novel Separation Layer for Improved Selectivity

    No full text
    The combination of gold nanoclusters (AuNCs) with surface plasmonic metal nanomaterials is an effective and direct method to improve the photoluminescence efficiency of AuNCs. However, the plasmon-enhanced AuNC luminescence strategies usually utilize silica as the separation layer, which requires further functionalization because the silica layer has no functional groups for in situ bonding of AuNCs. Therefore, it appears as a crucial need to develop an appropriate separation layer for the preparation of plasmon-enhanced AuNC luminescent nanomaterials. In this work, employing bovine serum albumin (BSA) as a novel separation layer, we prepared gold nanoparticles (AuNPs)@BSA@Au35NCs by a controllable and in situ synthesis method. BSA can form a BSA layer on the surface of AuNPs through Au–S bonds. Meanwhile, BSA can reduce AuCl4– ions to generate Au35NCs. In comparison with pure BSA-AuNCs, the quantum yield of the AuNPs@BSA@Au35NCs was increased by nearly 7 times as a result of plasmonic coupling, and the time of in situ synthesis of Au35NCs was shortened by 8 h. More importantly, the preparation of the BSA layer was simple and time-saving without functionalization, in contrast to the previously reported silica layer. Moreover, the simulation calculation of different dimensions determined the optimal binding sites between Au35NCs and BSA, confirming that BSA can be an effective spatial spacer. Finally, it was found that the BSA layer between AuNPs and AuNCs can improve the specificity of AuNCs toward H2S, which is extremely difficult for pure BSA@AuNCs

    Mass Spectrometry Imaging of Low-Molecular-Weight Phenols Liberated from Plastics

    No full text
    The abundant and heterogeneous distribution of toxic phenol from plastics has drawn worldwide attention. However, the common analysis methods failed to identify the accurate species of these phenolic hazards from plastics in a direct and nondestructive approach. Herein, we demonstrate the layered double hydroxides (LDHs) as a novel matrix in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for low-molecular-weight phenols leaked from plastics. LDHs own abundant hydroxyl groups to facilitate chemoselectivity and ionization of phenols through the formation of hydrogen bonds with these phenols. More importantly, the LDH matrix could provide a distinguishable signal for the homolog and isomeride of these phenolic hazards. The developed method could realize nondestructive and in situ mapping of phenolic hazards in plastics. Our success could help to track the low-molecular-weight compounds liberated from plastics and supply spatial information for polluted plastics. We anticipated that the proposed approach could provide sufficient information to evaluate and alarm the safety of food packaging plastics
    • …
    corecore