96 research outputs found
Influence of the solar EUV flux on the Martian plasma environment
The interaction of the solar wind with the Martian atmosphere and ionosphere is investigated by using three-dimensional, global and multi-species hybrid simulations. In the present work we focus on the influence of the solar EUV flux on the Martian plasma environment by comparing simulations done for conditions representative of the extrema of the solar cycle. The dynamics of four ionic species (H<sup>+</sup>, He<sup>++</sup>, O<sup>+</sup>, O<sub>2</sub><sup>+</sup>), originating either from the solar wind or from the planetary plasma, is treated fully kinetically in the simulation model in order to characterize the distribution of each component of the plasma, both at solar maximum and at solar minimum. The solar EUV flux controls the ionization frequencies of the exospheric species, atomic hydrogen and oxygen, as well as the density, the temperature, and thus the extension of the exosphere. Ionization by photons and by electron impacts, and the main charge exchange reactions are self-consistently included in the simulation model. Simulation results are in reasonable agreement with the observations made by Phobos-2 and Mars Global Surveyor (MGS) spacecraft: 1) the interaction creates a cavity, void of solar wind ions (H<sup>+</sup>, He<sup>++</sup>), which depends weakly upon the phase of the solar cycle, 2) the motional electric field of the solar wind flow creates strong asymmetries in the Martian environment, 3) the spatial distribution of the different components of the planetary plasma depends strongly upon the phase of the solar cycle. The fluxes of the escaping planetary ions are computed from the simulated data and results for solar maximum are compared with estimates based on the measurements made by experiments ASPERA and TAUS on board Phobos-2
Planetary Science Virtual Observatory architecture
In the framework of the Europlanet-RI program, a prototype of Virtual
Observatory dedicated to Planetary Science was defined. Most of the activity
was dedicated to the elaboration of standards to retrieve and visualize data in
this field, and to provide light procedures to teams who wish to contribute
with on-line data services. The architecture of this VO system and selected
solutions are presented here, together with existing demonstrators
In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail
Magnetic reconnection is one of the most important processes in
astrophysical, space and laboratory plasmas. Identifying the structure around
the point at which the magnetic field lines break and subsequently reform,
known as the magnetic null point, is crucial to improving our understanding
reconnection. But owing to the inherently three-dimensional nature of this
process, magnetic nulls are only detectable through measurements obtained
simultaneously from at least four points in space. Using data collected by the
four spacecraft of the Cluster constellation as they traversed a diffusion
region in the Earth's magnetotail on 15 September, 2001, we report here the
first in situ evidence for the structure of an isolated magnetic null. The
results indicate that it has a positive-spiral structure whose spatial extent
is of the same order as the local ion inertial length scale, suggesting that
the Hall effect could play an important role in 3D reconnection dynamics.Comment: 14 pages, 4 figure
Satellite Observations of Separator Line Geometry of Three-Dimensional Magnetic Reconnection
Detection of a separator line that connects magnetic nulls and the
determination of the dynamics and plasma environment of such a structure can
improve our understanding of the three-dimensional (3D) magnetic reconnection
process. However, this type of field and particle configuration has not been
directly observed in space plasmas. Here we report the identification of a pair
of nulls, the null-null line that connects them, and associated fans and spines
in the magnetotail of Earth using data from the four Cluster spacecraft. With
di and de designating the ion and electron inertial lengths, respectively, the
separation between the nulls is found to be ~0.7di and an associated
oscillation is identified as a lower hybrid wave with wavelength ~ de. This in
situ evidence of the full 3D reconnection geometry and associated dynamics
provides an important step toward to establishing an observational framework of
3D reconnection.Comment: 10 pages, 3 figures and 1 tabl
Localized Alfvénic solutions of nondissipative and compressible MHD
International audienceAlfvénic solutions of nondissipative MHD are entirely determined by their magnetic configuration. With the supplementary assumption of incompressibility any solenoidal field can be used to construct an Alfvénic solution. It is demonstrated that for nondissipative and compressible MHD the energy equation constrains the magnetic field of Alfvénic solutions to have a constant strength along field lines. Some topological solitons known in nondissipative and incompressible MHD do not have this property. New localized axisymmetric Alfvénic solutions of nondissipative and compressible MHD are explicitly constructed
- âŠ