90,869 research outputs found
Transonic airfoil analysis and design in nonuniform flow
A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness
Calculation of vortex lift effect for cambered wings by the suction analogy
An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented
VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy
A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method
Network attack detection at flow level
In this paper, we propose a new method for detecting unauthorized network
intrusions, based on a traffic flow model and Cisco NetFlow protocol
application. The method developed allows us not only to detect the most common
types of network attack (DDoS and port scanning), but also to make a list of
trespassers' IP-addresses. Therefore, this method can be applied in intrusion
detection systems, and in those systems which lock these IP-addresses
TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow
The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given
Structural optimization of an alternate design for the space shuttle solid rocket booster field joint
A structural optimization procedure is used to determine the shape of an alternate design for the shuttle solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in. diameter and 135 studs of 1 3/16 in. diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonliner displacement analysis. The minimum weight design has 135 studs of 1 3/16 in. diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design
A comparison of ultraviolet sensitivities in universal, nonuniversal, and split extra dimensional models
We discuss the origin of ultraviolet sensitivity in extra dimensional
theories, and compare and contrast the cutoff dependences in universal,
nonuniversal and split five dimensional models. While the gauge bosons and
scalars are in the five dimensional bulk in all scenarios, the locations of the
fermions are different in different cases. In the universal model all fermions
can travel in the bulk, in the nonuniversal case they are all confined at the
brane, while in the split scenario some are in the bulk and some are in the
brane. A possible cure from such divergences is also discussed.Comment: 9 pages, Latex, no figure, v2: further clarifications and references
added, accepted for publication in Phys. Rev.
Properties of derivative expansion approximations to the renormalization group
Approximation only by derivative (or more generally momentum) expansions,
combined with reparametrization invariance, turns the continuous
renormalization group for quantum field theory into a set of partial
differential equations which at fixed points become non-linear eigenvalue
equations for the anomalous scaling dimension . We review how these
equations provide a powerful and robust means of discovering and approximating
non-perturbative continuum limits. Gauge fields are briefly discussed.
Particular emphasis is placed on the r\^ole of reparametrization invariance,
and the convergence of the derivative expansion is addressed.Comment: (Minor touch ups of the lingo.) Invited talk at RG96, Dubna, Russia;
14 pages including 2 eps figures; uses LaTeX, epsf and sprocl.st
Rashba spin splitting in biased semiconductor quantum wells
Rashba spin splitting (RSS) in biased semiconductor quantum wells is
investigated theoretically based on the eight-band envelope function model. We
find that at large wave vectors, RSS is both nonmonotonic and anisotropic as a
function of in-plane wave vector, in contrast to the widely used linear and
isotropic model. We derive an analytical expression for RSS, which can
correctly reproduce such nonmonotonic behavior at large wave vectors. We also
investigate numerically the dependence of RSS on the various band parameters
and find that RSS increases with decreasing band gap and subband index,
increasing valence band offset, external electric field, and well width. Our
analytical expression for RSS provides a satisfactory explanation to all these
features.Comment: 5 pages, 4 figures, author names corrected, submitted to Phys. Rev.
Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice
We present exact calculations of the Potts model partition function
for arbitrary and temperature-like variable on -vertex
strip graphs of the honeycomb lattice for a variety of transverse widths
equal to vertices and for arbitrarily great length, with free
longitudinal boundary conditions and free and periodic transverse boundary
conditions. These partition functions have the form
, where
denotes the number of repeated subgraphs in the longitudinal direction. We give
general formulas for for arbitrary . We also present plots of
zeros of the partition function in the plane for various values of and
in the plane for various values of . Explicit results for partition
functions are given in the text for (free) and (cylindrical),
and plots of partition function zeros are given for up to 5 (free) and
(cylindrical). Plots of the internal energy and specific heat per site
for infinite-length strips are also presented.Comment: 39 pages, 34 eps figures, 3 sty file
- …