22 research outputs found

    Weakly Supervised Content Selection for Improved Image Captioning

    Full text link
    Image captioning involves identifying semantic concepts in the scene and describing them in fluent natural language. Recent approaches do not explicitly model the semantic concepts and train the model only for the end goal of caption generation. Such models lack interpretability and controllability, primarily due to sub-optimal content selection. We address this problem by breaking down the captioning task into two simpler, manageable and more controllable tasks -- skeleton prediction and skeleton-based caption generation. We approach the former as a weakly supervised task, using a simple off-the-shelf language syntax parser and avoiding the need for additional human annotations; the latter uses a supervised-learning approach. We investigate three methods of conditioning the caption on skeleton in the encoder, decoder and both. Our compositional model generates significantly better quality captions on out of domain test images, as judged by human annotators. Additionally, we demonstrate the cross-language effectiveness of the English skeleton to other languages including French, Italian, German, Spanish and Hindi. This compositional nature of captioning exhibits the potential of unpaired image captioning, thereby reducing the dependence on expensive image-caption pairs. Furthermore, we investigate the use of skeletons as a knob to control certain properties of the generated image caption, such as length, content, and gender expression

    Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs

    Full text link
    We introduce Lumos, a novel framework for training language agents that employs a unified data format and a modular architecture based on open-source large language models (LLMs). Lumos consists of three distinct modules: planning, grounding, and execution. The planning module breaks down a task into a series of high-level, tool-agnostic subgoals, which are then made specific by the grounding module through a set of low-level actions. These actions are subsequently executed by the execution module, utilizing a range of off-the-shelf tools and APIs. In order to train these modules effectively, high-quality annotations of subgoals and actions were collected and are made available for fine-tuning open-source LLMs for various tasks such as complex question answering, web tasks, and math problems. Leveraging this unified data and modular design, Lumos not only achieves comparable or superior performance to current, state-of-the-art agents, but also exhibits several key advantages: (1) Lumos surpasses GPT-4/3.5-based agents in complex question answering and web tasks, while equalling the performance of significantly larger LLM agents on math tasks; (2) Lumos outperforms open-source agents created through conventional training methods and those using chain-of-thoughts training; and (3) Lumos is capable of effectively generalizing to unseen interactive tasks, outperforming larger LLM-based agents and even exceeding performance of specialized agents.Comment: Project website: https://allenai.github.io/lumos

    Continual Dialogue State Tracking via Example-Guided Question Answering

    Full text link
    Dialogue systems are frequently updated to accommodate new services, but naively updating them by continually training with data for new services in diminishing performance on previously learnt services. Motivated by the insight that dialogue state tracking (DST), a crucial component of dialogue systems that estimates the user's goal as a conversation proceeds, is a simple natural language understanding task, we propose reformulating it as a bundle of granular example-guided question answering tasks to minimize the task shift between services and thus benefit continual learning. Our approach alleviates service-specific memorization and teaches a model to contextualize the given question and example to extract the necessary information from the conversation. We find that a model with just 60M parameters can achieve a significant boost by learning to learn from in-context examples retrieved by a retriever trained to identify turns with similar dialogue state changes. Combining our method with dialogue-level memory replay, our approach attains state of the art performance on DST continual learning metrics without relying on any complex regularization or parameter expansion methods.Comment: 11 pages, EMNLP 202

    Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness

    Full text link
    The ability to acknowledge the inevitable uncertainty in their knowledge and reasoning is a prerequisite for AI systems to be truly truthful and reliable. In this paper, we present a taxonomy of uncertainty specific to vision-language AI systems, distinguishing between epistemic uncertainty (arising from a lack of information) and aleatoric uncertainty (due to inherent unpredictability), and further explore finer categories within. Based on this taxonomy, we synthesize a benchmark dataset, CertainlyUncertain, featuring 178K visual question answering (VQA) samples as contrastive pairs. This is achieved by 1) inpainting images to make previously answerable questions into unanswerable ones; and 2) using image captions to prompt large language models for both answerable and unanswerable questions. Additionally, we introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error, to address the shortcomings of existing metrics.Comment: 26 page
    corecore